
Build your first network on Linux on IBM Z Lab Part 2 - Deploying a 
Smart Contract 
This	lab	will	walk	you	through	deploying	a	smart	contract	called	commercial-paper	that	is	
supplied	as	a	sample	by	the	Hyperledger	Fabric	project.	This	lab	assumes	that	you	have	
successfully	completed	the	IBM	Blockchain	Platform	v2.5.0	Lab	Part	1	-	Create	a	Blockchain	
Network.	If	you	have	not	completed	part	1,	you	must	do	so	before	continuing	with	this	lab.	

Section 1: Download the Commercial Paper Smart Contract package 
Step	1.1:	You	need	to	download	the	.cds	package	from	here:	commercial-paper.	If	you	are	
not	prompted	for	a	location	in	which	to	save	it,	then	your	browser	is	probably	saving	it	at	a	
default	location,	which	is	probably	/home/blockchain/Downloads.	

Section 2: Install Commercial Paper Contract to your Blockchain 
Network 
Step	2.1:	Click	on	the	Smart	Contracts	icon	in	the	icon	palette	on	the	left,	and	in	the	Smart	
contracts	panel,	click	the	blue	Install	smart	contract	button:	

	

image	

Step	2.2:	In	the	(Step	1	of	2)	Install	smart	contract	side	panel,	using	the	blue	Add	File	
button,	upload	the	papercontract@0.0.4.cds	package	(from	the	location	
/home/blockchain/Downloads	or	from	wherever	you	saved	it),	and	click	the	Next	button.	
The	screenshot	that	follows	shows	that	the	name	and	version	of	the	smart	contract	have	
replaced	the	Add	File	button:	



	



image	

Step	2.3:	Now	select	both	peers	(ensure	each	has	a	check	mark	to	the	right	of	it)	and	click	
the	Install	smart	contract	button.	Note	that	in	this	lab	we	are	installing	to	peers	from	two	
separate	organizations.	In	most	“real	world”	situations,	the	smart	contract	would	be	shared	
with	members	of	the	blockchain	network,	in	a	private	Github	repo	or	through	some	other	
means,	and	each	organization	would	install	the	smart	contract	to	its	own	peers	through	its	
own	console.	



	



image	

Step	2.4:	Now,	you	should	see	papercontract	appear	in	the	Installed	smart	contracts	
section	of	the	Smart	contracts	screen:	

	

image	

Section 3: Instantiate Paper Contract 
Step	3.1:	From	the	Installed	smart	contracts	section	of	the	Smart	contracts	panel,	select	the	
three	dots	to	the	right	of	papercontract	and	select	Instantiate:	

	

image	

Step	3.2:	In	the	Instantiate	smart	contract	(Step	1	of	5)	sidebar	panel,	select	teamxx-
channel1,	where	xx	is	your	two-digit	team	ID,	in	the	Channel	field	and	click	the	Next	
button:	



	



image	

Step	3.3:	In	the	Step	2	of	5	sidebar	panel,	select	both	peers	in	the	Members	list	(ensure	that	
each	has	a	checkmark	to	the	right	of	it),	select	2	out	of	2	members	need	to	endorse	
transactions	from	the	Policy	dropdown	list,	and	then	click	the	Next	button:	



	



image	

Step	3.4:	In	the	Step	3	of	5	sidebar	panel,	select	Teamxx	Org1	Peer,	where	xx	is	your	two-
digit	team	ID,	in	the	Peer	field,	as	the	peer	to	approve	proposals	for	instantiating	the	smart	
contract,	and	click	the	Next	button:	



	



image	

Step	3.5:	In	the	Step	4	of	5	sidebar	panel,	skip	adding	a	private	data	collection	and	just	click	
Next:	



	



image	

Step	3.6:	In	the	Step	5	of	5	sidebar	panel,	leave	the	function	name	blank	(it	will	by	default	
call	the	init	function	in	the	smart	contract	which	is	what	we	want	for	papercontract)	And	
leave	the	arguments	box	blank.	Simply	click	the	Instantiate	smart	contract	button:	



	



image	

Step	3.7:	First	time	instantiation	could	take	a	while	because	the	Node.js	smart	contract	is	
pulling	in	all	the	package	dependencies	from	the	public	NPM	registry.	After	a	few	minutes,	
instantiation	should	complete.	If	you	scroll	down	on	the	Smart	Contracts	panel,	you	will	see	
the	list	of	Instantiated	Smart	Contracts	now	includes	papercontract:	

	

image	

!!!	note	“Read	this	if	your	instantiation	failed”	If	you	receive	a	message	indicating	that	an	
error	occurred	during	instantiation,	click	the	Show	error	details	link.	If	it	states	that	the	
grpc	web	client	timed	out	the	proposal	after	five	minutes,	simply	click	the	Instantiate	
smart	contract	button	again.	There	is	a	hard-coded	timeout	of	five	minutes,	and	
sometimes	in	our	lab	system	it	takes	just	over	five	minutes	to	build	the	Docker	image	for	
the	smart	contract.	Even	if	this	timeout	occurs,	the	Docker	image	does	get	built,	so	that	if	
you	try	it	again,	the	Docker	image	already	exists,	and	you	will	most	likely	succeed	on	this	
second	attempt	in	much	less	than	five	minutes.	

Now	that	you	have	the	smart	contract	instantiated	on	the	channel,	you	are	ready	to	move	
on	to	the	next	step.	

Section 4: Register client user for TeamXX Org1 
Now	you	need	to	register	a	client	user	to	use	to	enroll	application	identities	for	Org1.	In	
real	life,	as	the	blockchain	network	administrator	for	your	organization,	you	might	want	to	
register	a	distinct	client	user	for	each	business	application	that	has	a	need	to	access	the	
smart	contract.	In	this	case,	the	same	client	user	is	used	to	enroll	a	number	of	application	
identities.	Another	development	pattern	is	to	register	a	distinct	client	user	for	each	distinct	
application	identity.	You	can	register	a	client	user	through	the	Fabric	application	SDK	as	
well,	though	that	is	not	covered	in	this	lab.	

Step	4.1:	Go	to	the	Nodes	view	on	your	IBM	Blockchain	Platform	Console,	and	navigate	to	
the	Certificate	Authorities	section.	Then	select	Teamxx	Org1	CA,	where	xx	is	your	two-digit	
team	ID:	



	

image	

Step	4.2:	Select	the	Register	user	button:	



	

image	

Step	4.3:	In	the	Register	User	(Step	1	of	2)	sidebar	panel,	fill	in	the	fields	as	directed	by	the	
table	below,	and	then	click	the	Next	button:	

Field	label	 Value	 Comments	
Enroll	ID	 app-dev	 	

Enroll	secret	 app-devpw	 click	the	“eye”	icon	to	see	the	password	
Type	 client	 This	will	be	populated	for	you	

Step	4.4:	In	the	Register	User	(Step	2	of	2)	sidebar	panel,	just	click	the	Register	user	
button.	

Step	4.5:	Now	you	should	see	the	app-dev	user	you	added	show	up	under	Registered	users:	



	

image	

Section 5: Register client user for TeamXX Org2 (Optional) 
Now	we	will	register	a	client	user	for	enrolling	application	identities	for	Org2.	This	section	
is	optional.	In	the	sections	that	follow,	you	will	only	connect	directly	to	Org1’s	peer.	You	
will	only	need	to	register	a	client	user	for	Org2	if	you	wish	to	connect	to	go	above	and	
beyond	the	steps	in	this	lab	and	try	connecting	directly	to	Org2’s	peer.	

Step	5.1:	Go	to	the	Nodes	view	on	your	IBM	Blockchain	Platform	Console,	and	navigate	to	
the	Certificate	Authorities	section.	Then	select	Teamxx	Org2	CA,	where	xx	is	your	two-digit	
team	ID.	

Step	5.2.	Follow	the	same	steps	from	Section	4,	Steps	4.2-4.5	in	order	to	register	a	client	
user,	also	named	app-dev,	for	Org2.	

Section 6: Download the connection profile to connect to TeamXX 
Org1 Peer 
The	connection	profile	is	a	JSON	file	that	describes	all	the	connection	endpoints,	MSP	
information,	channel	information	and	certificate	information	required	to	connect	to	your	
organization’s	peer.	A	client	application	wishing	to	invoke	transactions	against	a	smart	
contract	would	require	this	file	to	obtain	the	necessary	information	needed	to	make	that	
connection.	Without	IBM	Blockchain	Platform,	this	is	a	file	you	would	put	together	yourself	
using	existing	sample	connection	profiles	available	in	the	Hyperledger	Fabric	community.	
With	the	IBM	Blockchain	Platform,	you	can	download	a	ready-made	file	from	the	IBM	
Blockchain	Platform	Console.	



Step	6.1:	Select	the	Organizations	icon	from	the	icon	palette	on	the	left,	then	click	the	
Teamxx	Org1	MSP	tile,	where	xx	is	your	two-digit	team	ID:	

	

image	

Step	6.2:	Click	the	blue	Create	connection	profile	button:	



	

image	

Step	6.3.	In	the	Create	connection	profile	sidebar	panel,	select	your	Teamxx	Org1	Peer,	
where	xx	is	your	two-digit	team	ID,	and	click	the	blue	Download	connection	profile	
button:	



	

image	



Use	the	file	save	dialog	to	save	the	profile	under	its	default	name	of	
teamxxorg1msp_profile.json	(where	xx	is	your	two-digit	team	ID).	Keep	track	of	where	
you	saved	this	profile,	as	you	will	be	using	it	in	the	next	section.	

Section 7: Create a new Gateway in VSCode IBM Blockchain Platform 
Extension 
!!!	note	You	will	be	using	the	IBM	Blockchain	Platform	VSCode	extension	for	the	next	few	
sections	but	leave	your	Firefox	browser	tab	for	the	IBM	Blockchain	Platform	Console	open	
(you	can	minimize	your	browser	window	if	you’d	like)	as	you	will	be	going	back	to	it	in	the	
latter	half	of	Section	10.	

Now	you	can	use	that	connection	profile	you	just	downloaded	to	create	a	new	gateway	in	
VSCode	IBM	Blockchain	Platform	Extension.	

Step	7.1:	In	the	VSCode	IBM	Blockchain	Platform	view,	click	on	the	+	in	the	Fabric 
Gateways	panel	(if	you	are	still	connected	to	your	local	gateway	you	will	need	to	disconnect	
from	this	gateway	first.	You	can	do	so	by	clicking	on	the	door	icon	where	the	+	should	be):	

	

image	

Step	7.2:	Then	in	the	popup	window	at	the	top	of	VSCode,	select	Create	a	gateway	from	a	
connection	profile:	

	

image	

Step	7.3:	Next	you	will	be	asked	to	enter	the	name	of	the	gateway.	Type	teamxx-ibp,	
remembering	to	replace	xx	with	your	team	number,	and	press	Enter.	



Step	7.4:	Finally,	you	will	be	asked	to	browse	to	the	connection	profile	that	you	
downloaded	from	Section	6.	Browse	to	it,	and	click	Select.	

Step	7.5:	Upon	success,	you	will	see	teamxx-ibp,	where	xx	is	your	two-digit	team	ID,	show	
up	in	the	Fabric	Gateways	panel	as	follows:	

	

image	

Section 8: Create a new wallet and identity in VSCode IBM Blockchain 
Platform Extension 
Step	8.1:	In	the	VSCode	IBM	Blockchain	Platform	view,	click	on	the	+	in	the	Fabric 
Wallets	panel:	

	

image	

Step	8.2.	Select	create	a	new	wallet	and	add	an	identity	in	the	popup	window:	



	

image	

Step	8.3:	Type	teamxx-wallet	in	the	next	popup	window,	where	xx	is	your	two-digit	team	
ID,	and	press	Enter:	

	

image	

Step	8.4:	Type	teamxxorg1msp	as	the	MSPID,	where	xx	is	your	two-digit	team	ID,	and	
press	Enter:	

	

image	

Step	8.5:	Pick	Select	a	gateway	and	provide	an	enrollment	ID	and	secret:	

	

image	

Step	8.6:	Type	isabella	as	the	name	for	the	identity,	and	press	Enter:	

	

image	

Step	8.7:	Choose	teamxx-ibp	as	the	gateway	you	want	to	enroll	and	identity	with,	where	xx	
is	your	two-digit	team	ID:	



	

image	

Step	8.8:	Type	app-dev	as	the	enrollment	ID	and	press	Enter:	

	

image	

Step	8.9:	Type	app-devpw	as	the	enrollment	secret	and	press	Enter:	

	

image	

Step	8.10:	Upon	success	you	will	see	the	new	wallet	and	identity	in	the	Fabric	Wallets	
panel:	

	

image	

Section 9: Connect to the teamxx-ibp gateway 
Now	that	you	have	created	a	wallet	and	enrolled	an	ID	and	password,	you	are	ready	to	
connect	to	the	teamxx-ibp	gateway.	

Step	9.1:	Click	on	teamxx-ibp,	in	the	Fabric	Gateways	panel,	where	xx	is	your	two-digit	
team	ID:	



	

image	

Step	9.2:	In	the	popup	window,	select	teamxx-wallet,	where	xx	is	your	two-digit	team	ID:	

	

image	

Step	9.3:	Upon	success,	you	will	also	see	your	new	gateway	represented	in	the	Fabric	
Gateways	panel.	Expand	the	twisties	until	you	see	your	papercontract	transactions:	



	

image	

Section 10: Issue a transaction to test the connection 
Now	we	are	ready	to	submit	a	test	transaction.	

Step	10.1:	From	the	Fabric	Gateways	panel,	expand	into	the	papercontract@0.0.4	
contract,	right-click	on	the	issue	transaction	and	select	Submit	Transaction:	



	

image	

Step	10.2:	Copy	and	paste	the	following	inside	the	brackets	as	the	argument,	and	then	
press	Enter:	

"MagnetoCorp","00002","2020-07-31","2020-12-31","6000000"	

Example:	

	

image	

Step	10.3:	Press	Enter	on	the	transient	data	popup	window.	

!!!	Note	“Read	this	if	your	transaction	timed	out”	This	step	may	take	several	minutes.	When	
you	instantiated	the	smart	contract	in	Section	3,	it	built	a	Docker	image	for	the	smart	
contract	on	only	one	peer,	the	peer	on	which	you	chose	to	run	the	instantiate	proposal	(see	
Step	3.4).	The	Docker	image	for	the	other	peer	will	be	built	on	first	use,	and	this	transaction	
may	time	out.	If	it	does,	simply	run	steps	10.1	through	10.3	again,	and	it	should	succeed	this	
time.	

Step	10.4:	Upon	success	you	will	see	the	results	from	the	issue	transaction	in	the	OUTPUT	
panel	in	VSCode,	similar	to	what	is	shown	here:	



[4/15/2020 4:49:08 PM] [INFO] submitTransaction	
[4/15/2020 4:49:15 PM] [INFO] submitting transaction issue with args MagnetoC
orp,00002,2020-07-31,2020-12-31,6000000 on channel teamxx-channel1	
[4/15/2020 4:49:26 PM] [SUCCESS] Returned value from issue: {"class":"org.pap
ernet.commercialpaper","key":"\"MagnetoCorp\":\"00002\"","currentState":1,"is
suer":"MagnetoCorp","paperNumber":"00002","issueDateTime":"2020-07-31","matur
ityDateTime":"2020-12-31","faceValue":"6000000","owner":"MagnetoCorp"}	

Step	10.5:	Now,	return	to	the	IBM	Blockchain	Platform	Console	at	your	assigned	URL	in	
Firefox.	Go	to	the	Channels	view,	and	click	on	the	teamxx-channel1	tile,	where	xx	is	your	
two-digit	team	ID:	

	

image	

Step	10.6:	You	should	see	that	the	block	height	is	now	6.	In	the	Block	History	section,	click	
on	the	block	at	the	top	of	the	table:	

	

image	



Step	10.7:	Now	you	will	see	a	list	of	transactions	in	block	#5.	Click	on	the	topmost	
transaction	(there	should	only	be	one):	

	

image	

Step	10.8:	In	the	Transaction	sidebar	panel	you	should	see	the	issue	transaction	and	its	
input	arguments	in	the	Input	section,	and	the	output	of	the	transaction	in	the	Output	
section,	from	the	transaction	that	you	just	submitted	via	the	VSCode	IBM	Blockchain	
Platform	Extension.	



	



image	

Step	10.9:	OPTIONAL:	you	can	submit	additional	transactions	through	VSCode,	and	watch	
the	block	height	increase	and	look	at	the	transaction	in	the	IBM	Blockchain	Platform	
Console.	

Congratulations!!	You’ve	now	successfully	enrolled	an	application	identity	and	used	it	to	
invoke	transactions	against	a	smart	contract	deployed	to	IBM	Blockchain	Platform	v2.5.0!	


