
IBM Blockchain

IBM Blockchain Platform Hands-On

Lab 3:

Connecting to an Existing Network

IBM Blockchain An IBM Proof of Technology

Page 2

 Lab 3

Table of Contents

Disclaimer .. 4

1 Overview of the lab environment and scenario .. 6

1.1 Lab Scenario ... 7

2 Connecting to an Existing Network .. 8

2.1 Setting up ... 9

2.2 Working as MagnetoCorp. .. 14

2.3 Running the Issue transaction as MagnetoCorp ... 18

2.4 Working as DigiCorp ... 29

2.5 Running the Buy and Redeem transactions as DigiBank .. 52

2.6 Issuing another paper as MagnetoCorp .. 56

2.7 Buying another paper as DigiBank .. 57

2.8 Looking at Errors .. 59

3 We Value Your Feedback! ... 62

4 Running the lab on your own machine: ... 63

Appendix 1 The networkConnection.json file: ... 63

Appendix 2 The getPaper.js file: ... 63

Appendix 3 The fabric-samples\basic-network\docker-compose.yml file 66

IBM Blockchain An IBM Proof of Technology

Page 3

 Lab 3

IBM Blockchain An IBM Proof of Technology

Page 4

 Lab 3

Disclaimer
IBM’s statements regarding its plans, directions, and intent are subject to change or

withdrawal without notice at IBM’s sole discretion. Information regarding potential future

products is intended to outline our general product direction and it should not be relied on in

making a purchasing decision.

The information mentioned regarding potential future products is not a commitment, promise,

or legal obligation to deliver any material, code or functionality. Information about potential

future products may not be incorporated into any contract.

The development, release, and timing of any future features or functionality described for our

products remains at our sole discretion I/O configuration, the storage configuration, and the

workload processed. Therefore, no assurance can be given that an individual user will achieve

results like those stated here.

Information in these presentations (including information relating to products that have not

yet been announced by IBM) has been reviewed for accuracy as of the date of

initial publication and could include unintentional technical or typographical errors. IBM shall

have no responsibility to update this information. This document is distributed “as is”

without any warranty, either express or implied. In no event, shall IBM be liable for any

damage arising from the use of this information, including but not limited to, loss of data,

business interruption, loss of profit or loss of opportunity. IBM products and services are

warranted per the terms and conditions of the agreements under which they are provided.

IBM products are manufactured from new parts or new and used parts.

In some cases, a product may not be new and may have been previously installed. Regardless,

our warranty terms apply.”

Any statements regarding IBM's future direction, intent or product plans are subject to

change or withdrawal without notice.

Performance data contained herein was generally obtained in controlled,

isolated environments. Customer examples are presented as illustrations of how those

customers have used IBM products and the results they may have achieved. Actual

performance, cost, savings or other results in other operating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM

intends to make such products, programs or services available in all countries in which

IBM operates or does business.

Workshops, sessions and associated materials may have been prepared by independent

session speakers, and do not necessarily reflect the views of IBM. All materials and

IBM Blockchain An IBM Proof of Technology

Page 5

 Lab 3

discussions are provided for informational purposes only, and are neither intended to, nor shall

constitute legal or other guidance or advice to any individual participant or their specific

situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to

obtain advice of competent legal counsel as to the identification and interpretation of any

relevant laws and regulatory requirements that may affect the customer’s business and any

actions the customer may need to take to comply with such laws. IBM does not provide legal

advice or represent or warrant that its services or products will ensure that the customer

follows any law.

Information concerning non-IBM products was obtained from the suppliers of those products,

their published announcements or other publicly available sources. IBM has not tested

those products about this publication and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the capabilities of

non-IBM products should be addressed to the suppliers of those products. IBM does not

warrant the quality of any third-party products, or the ability of any such third-party products

to interoperate with IBM’s products. IBM expressly disclaims all warranties, expressed or

implied, including but not limited to, the implied warranties of merchantability and fitness

for a purpose.

The provision of the information contained herein is not intended to, and does not, grant any

right or license under any IBM patents, copyrights, trademarks or other intellectual

property right.

IBM, the IBM logo, ibm.com and [names of other referenced IBM products and services used in

the presentation] are trademarks of International Business Machines Corporation, registered in

many jurisdictions worldwide. Other product and service names might be trademarks of IBM or

other companies. A current list of IBM trademarks is available on the Web at "Copyright and

trademark information" at: www.ibm.com/legal/copytrade.shtml.

© 2019 International Business Machines Corporation. No part of this document may be

reproduced or transmitted in any form without written permission from IBM.

U.S. Government Users Restricted Rights — use, duplication or disclosure restricted by

GSA ADP Schedule Contract with IBM.

http://www.ibm.com/legal/copytrade.shtml

IBM Blockchain An IBM Proof of Technology

Page 6

 Lab 3

1 Overview of the lab environment and scenario

This lab is a technical introduction to blockchain, specifically smart contract development

using the latest developer enhancements in the Linux Foundation’s Hyperledger Fabric v1.4

and shows you how IBM’s Blockchain Platform’s developer experience can accelerate your

pace of development.

Note: The screenshots in this lab guide were taken using version 1.37.1 of VS Code, and version

1.0.9 of the IBM Blockchain Platform plugin. If you use different versions, you may see

differences to those shown in this guide.

Start here. Instructions are always shown on numbered lines like this one:

__ 1. If it is not already running, start the virtual machine for the lab. The instructor will tell

you how to do this if you are unsure.

__ 2. Wait for the image to boot and for the associated services to start. This happens

automatically but might take several minutes. The image is ready to use when the

desktop is visible as per the screenshot below.

Note: If it asks you to login, the userid and password are both “blockchain”.

IBM Blockchain An IBM Proof of Technology

Page 7

 Lab 3

1.1 Lab Scenario
In this lab, part three, we will take you through connecting to an existing network, one

that is running outside of in Visual Studio Code (VS Code). The network we will be using

is the ‘basic-network’ used by the “Commercial Paper” Hyperledger Fabric tutorial,

and we will stand this network up, run through a simple version of the tutorial and then

extend the network with a new smart contract transaction.

Note that if you get an “Software Updater” pop-up at any point during the lab, please

click “Remind Me Later”:

IBM Blockchain An IBM Proof of Technology

Page 8

 Lab 3

2 Connecting to an Existing Network

As mentioned above, in this lab will be using the Hyperledger Fabric “Commercial

Paper” tutorial. The full version of this tutorial is available online and we will be using a

simplified version of it designed to work well in a lab environment.

The scenario the tutorial follows is one of a commercial paper trading network called

PaperNet. Commercial paper itself is a type of unsecured lending in the form of a

“promissory note”. The papers are normally issued by large corporations to raise funds

to meet short-term financial obligations at a fixed rate of interest. Once issued at a

fixed price, for a fixed term, another company or bank will purchase them at a discount

to the face value and when the term is up, they will be redeemed for their face value.

As an example, if a paper was issued at a face value of 10 million USD for a 6-month

term at 2% interest then it could be bought for 9.8 million USD (10M – 2%) by another

company or bank who are happy to bear the risk that the issuer will not default. Once

the term is up, then the paper could be redeemed or sold back to the issuer for their

full face value of 10 million USD. Between buying and redemption, the paper can be

bought or sold between different parties on a commercial paper market.

These three key steps of issue, buy and redeem are the main transactions in a

simplified commercial paper marketplace, which we will mirror in our lab. We will see a

commercial paper issued by a company called MagnetoCorp, and once issued on the

PaperNet blockchain network another company called DigiBank will first buy the paper

and then redeem it.

In diagram form it looks like this:

So, let’s begin!

https://hyperledger-fabric.readthedocs.io/en/latest/tutorial/commercial_paper.html

IBM Blockchain An IBM Proof of Technology

Page 9

 Lab 3

2.1 Setting up

__ 3. Use the launcher to open a terminal:

__ 4. Enter the following cd command to change directory to the basic network folder that

we will use for this lab:

cd workspace/fabric-getting-started/fabric-samples/basic-network

If you are not familiar with the command line, you can just copy and paste the above

or you can type it yourself if you prefer. Remember you can press the tab key after

typing the first few characters of the folder name to auto-complete the full name and

save some typing. When you have run the command, your console should look like

this:

IBM Blockchain An IBM Proof of Technology

Page 10

 Lab 3

__ 5. Type the ls command and press enter to see the files that make up the basic-

network.

These files contain the configuration for the basic-network along with a script to set it

up. Feel free to have a look at their contents if you are curious. The main files of

interest are start.sh and docker-compose.yml; you can open the files to view them

with a command like “code start.sh” but make sure you do not change the

contents of any of the files.

IBM Blockchain An IBM Proof of Technology

Page 11

 Lab 3

__ 6. To start the network running, run the following command in your terminal:

./start.sh

Note: make sure you enter the period (.) at the beginning of this command or the

command will not be found.

This command is a script that starts the docker containers that make up the basic

network and may take a minute or so to run. The command may output a warning

which you can ignore. When it has finished, your terminal should look something like

this:

Next we will look at the containers that were started.

IBM Blockchain An IBM Proof of Technology

Page 12

 Lab 3

__ 7. Run the command below in your terminal:

docker ps

This command lists the docker containers that are running. Although this output is a

little hard to read, you can make your terminal window wider to see the output better

if you wish. This command shows that we have started four containers, one for each of

the Hyperledger fabric-peer, fabric-ca, fabric-couchdb and fabric-orderer

components. Together these make up the simple basic-network that we will be

using. A more realistic setup would have multiple copies of the components to better

reflect the multiple parties in the network, but for a lab this simple network will

suffice. In a diagram form, the network looks like this:

IBM Blockchain An IBM Proof of Technology

Page 13

 Lab 3

__ 8. These containers are joined together into the same docker network called net_basic.

A docker network lets containers communicate with each other. Take a look at the

network by running this command to inspect it:

docker network inspect net_basic

You should see output similar to this:

Scroll back up and look at the output. You can see that each of the containers have

their own IP address inside the same network so they can communicate with each

other.

Next, we will begin working as if we were an administrator for MagnetoCorp who

would want to see combined logs from all these components. Although proper

dashboards could be created, we will use a simple log viewing tool in this lab.

IBM Blockchain An IBM Proof of Technology

Page 14

 Lab 3

2.2 Working as MagnetoCorp.

__ 9. From the terminal, change to the following folder:

cd ../commercial-paper/organization/magnetocorp/configuration/cli/

The full path should now be showing as:

~/workspace/fabric-getting-started/fabric-samples/commercial-

paper/organization/magnetocorp/configuration/cli

IBM Blockchain An IBM Proof of Technology

Page 15

 Lab 3

__ 10. As this terminal is going to spend the rest of this lab showing the logs, let’s give it a

title so we can easily see what it is doing:

set-title docker log output

As you can see, this changes the title of the terminal window to make it easily

identifiable:

IBM Blockchain An IBM Proof of Technology

Page 16

 Lab 3

__ 11. Now we will run the monitoring script to show the docker logs in this terminal:

./monitordocker.sh net_basic

This terminal is now waiting to display any logging output from the net_basic docker

network. Keep an eye on this terminal throughout the rest of this lab and you will see

logging messages appear as we run the different commands.

IBM Blockchain An IBM Proof of Technology

Page 17

 Lab 3

__ 12. Now we need a new terminal window as the current one is dedicated to logging

output. Make sure the current terminal window is selected by clicking in it, and from

the “File” menu at the top of the screen, choose “Open Terminal”

This should open a new terminal window, with the path set to the same location as the

logging terminal where we can enter new commands:

Next, we are going to act as a MagnetoCorp administrator again and interact with the

network. To do this we need to issue commands to the peer to install and instantiate

smart contracts (also known as chaincode). Unlike in the previous labs, we are going

to do this manually without VS Code for now so we can see the different experience.

IBM Blockchain An IBM Proof of Technology

Page 18

 Lab 3

2.3 Running the Issue transaction as MagnetoCorp

__ 13. First, let’s give our terminal a name so we know who we are running as by issuing

the command:

set-title MagnetoCorp

As before when we ran this for the logging window, you should see the terminal title

change to MagnetoCorp:

IBM Blockchain An IBM Proof of Technology

Page 19

 Lab 3

__ 14. The Fabric commands we need to use are in the fabric-tools docker image, so let’s

start it running by issuing this docker-compose command to start the container:

docker-compose -f docker-compose.yml up -d cliMagnetoCorp

Docker compose is a tool that allows you to define and run multi-container

applications. In this case it will start the fabric-tools container and join it to the

existing net_basic network. You should see output telling you that the container has

been created, with the cliMagnetoCorp name we gave it:

If we run the docker ps command again we should see that the new container is

running. You can also see the container we created above for logging is running as

well:

Both of these containers have also been added to the net_basic network as well and

you can run the docker network inspect net_basic command again if you want to see

this for yourself.

Next we will begin to deploy the PaperNet smart contract.

IBM Blockchain An IBM Proof of Technology

Page 20

 Lab 3

__ 15. Change directory to the magnetocorp/contract folder:

cd ../../contract/

The full path should now be showing as: ~/workspace/fabric-getting-

started/fabric-samples/commercial-paper/organization/magnetocorp/contract

__ 16. Let’s take a brief look at the contract in VS Code. Open the contract folder in VS

Code by running:

code .

Note: do not miss the period (.) after the word code.

__ 17. When VS Code opens, expand the “lib” folder and double click on the

papercontract.js file to open it in the edit pane:

IBM Blockchain An IBM Proof of Technology

Page 21

 Lab 3

__ 18. The Commercial Paper contract is more sophisticated than the contracts we saw in

labs one and two, but it mostly works the same way. The main

CommercialPaperContract class starts on line 31, and if we use the “>” buttons

highlighted below in the VS Code editor to fold the methods of this class we can see

that the main transactions are instantiate, issue, buy and redeem.

Note: These “>” buttons only appear when you move your mouse over their location,

as shown above.

IBM Blockchain An IBM Proof of Technology

Page 22

 Lab 3

__ 19. Let’s expand the issue transaction and take a look so we can see what it will do.

Line 68 creates a new CommercialPaper object from the parameters passed in using

the static createInstance method on the CommercialPaper class. This class is

defined in the separate “paper.js” file which is also if the lib folder alongside

papercontract.js if you want to take a look at this method.

Line 71 then moves the newly created paper into the ISSUED state and on line 74 it

has its owner set from the parameters passed in.

Line 77 adds the paper to a “paperList” which is responsible for storing the state of

the paper in the world state. This is defined in the paperlist.js file if you want to take a

deeper look.

Line 80 then returns the paper to the client who called this transaction.

Feel free to have a look at the other files that make up the commercial paper smart

contract. If you want to delve even deeper into the design of the CommercialPaper

contract, there is much more information online if you have time to take a look.

Now we are going to install the papercontract onto a peer in the network.

https://hyperledger-fabric.readthedocs.io/en/latest/developapps/smartcontract.html

IBM Blockchain An IBM Proof of Technology

Page 23

 Lab 3

__ 20. Switch back to the MagnetoCorp terminal window and issue the following

command:

docker exec cliMagnetoCorp peer chaincode install -n

papercontract -v 0.0.3 -p /opt/gopath/src/github.com/contract -l

node

Note: The above command must be entered as a single line. If you copy and paste it

from the pdf, be sure to enter it as a single line.

Note 2: In the above command, the flags are case-sensitive and the flag “-l” is a

letter “l” for language and not a number one.

This command uses the cliMagnetoCorp container which was configured to send

commands to peer0.org1.example.com in our basic network. Its main role is to copy

the papercontract source code and send it to the remote peer, ready for it to be

instantiated.

IBM Blockchain An IBM Proof of Technology

Page 24

 Lab 3

__ 21. To instantiate the contract on peer0, issue the following command at the

MagnetoCorp terminal:

docker exec cliMagnetoCorp peer chaincode instantiate -n

papercontract -v 0.0.3 -l node -c

'{"Args":["org.papernet.commercialpaper:instantiate"]}' -C

mychannel -P "AND ('Org1MSP.member')"

Note: As before, the above command must be entered as a single line. If you copy and

paste it from the pdf, be sure to enter it as a single line. Again, remember, the flags are

case-sensitive and the flag “-l” is a letter “l” for language and not a number one.

This command also uses the cliMagnetoCorp container to cause the contract to

become instantiated on the mychannel channel. In addition, it also invokes the

instantiate transaction as part of the command which allows any required

initialisation to take place. Finally, note the last option – the -P flag which specifies

which organisations in the network need to endorse the transactions issued by this

contract before they will be considered valid.

Note that this command may take a little time to run as it will cause the peer to create

a new docker container to be created to run the contract in.

IBM Blockchain An IBM Proof of Technology

Page 25

 Lab 3

If you wish to see this new container, run the docker ps command again – it should

have a name beginning with: dev-peer0.org1.example.com-papercontract-0.

Note 2: Log messages are written to the docker log output window as a result of

the instantiate transaction if you want to take a quick look.

Now the contract is up and running, it is time to start running transactions, and to start

things moving, MagnetoCorp is going to run an application to issue the first

commercial paper on the PaperNet network. To do this we are going to act as

Isabella, an employee of MagnetoCorp.

__ 22. Change to the folder that contains the issue application.

cd ../application/

The full path at this point should be: ~/workspace/fabric-getting-started/fabric-

samples/commercial-paper/organization/magnetocorp/application

__ 23. Run the ls command to see the files in this folder:

ls

We see that there are several files:

Next let’s take a look at the issue application.

__ 24. Run this command to open the issue application in the VS Code editor so we can

see the code:

code issue.js

Take a look at the code for the issue application. The main points are:

IBM Blockchain An IBM Proof of Technology

Page 26

 Lab 3

Lines 18 - 21: Import various dependencies

Line 25: Load the identity from the wallet on the file system

Line 31: Create a new gateway

Line 41: Load the connection profile from file system

Line 53: Connect to the gateway

Line 58: Get the mychannel channel from the gateway network

Line 63: Get the papercontract contract from the gateway

Line 68: Use the contract to submit the issue transaction, passing in the details of the

paper to be issued.

Line 71: Log the response

As we can see above on line 25, the issue application will need to load Isabella’s

identity before it can create the transaction, so we need to make sure her identity is in

the wallet that the issue application will use as shown in this diagram:

However, before we can run the application, we need to download the dependencies

listed in the package.json file from npm

IBM Blockchain An IBM Proof of Technology

Page 27

 Lab 3

__ 25. Switch back to the MagnetoCorp terminal and issue this command:

npm install

Note: This will take a while to download the dependencies and you may see a slightly

different output to that shown below.

When the download has finished, if you run ls again, you will see a new node_modules

folder has been created. It is the node_modules folder that contains the dependencies.

__ 26. Now we are almost ready to issue a new commercial paper, we just need to load

Isabella’s digital certificate into the wallet before we can use it. To do this we run the

following application:

node addToWallet.js

addToWallet simply copies an identity from the basic-network to our wallet location

for use by other applications.

IBM Blockchain An IBM Proof of Technology

Page 28

 Lab 3

__ 27. Run this command to see the contents of the newly created wallet:

ls ../identity/user/isabella/wallet/

Now you can see the User1@org1.example.com folder which is used by the issue

application. If we run another command, we can see the three files that make up the

identity itself:

ls ../identity/user/isabella/wallet/User1@org1.example.com

These files consist of a private key for signing transactions, a public key linked to the

private key and a file that contains both metadata and a certificate for our user.

IBM Blockchain An IBM Proof of Technology

Page 29

 Lab 3

__ 28. Now we can finally issue the commercial paper by running:

node issue.js

From the output you can see that we followed the steps outlined above to

successfully issue commercial paper 00001 for 5,000,000 USD. We have submitted

the transaction to the network and the contract has written these details to the world

state and the ledger. The transaction was also endorsed and validated before it was

committed.

2.4 Working as DigiCorp

__ 29. Now that we have issued paper 00001, we want to take on the persona of an

employee of DigiBank who is going to buy and redeem this paper. If we look at a

diagram, we can see how they will interact with the same network:

IBM Blockchain An IBM Proof of Technology

Page 30

 Lab 3

__ 30. Let’s open up a new tabbed terminal window so we can act as Balaji, an employee

of DigiBank. Make sure the MagnetoCorp terminal window has focus, then press:

ctrl + shift + t

This will open up a new tab alongside the MagnetoCorp one:

__ 31. For ease of use, let’s give this new terminal tab a name:

set-title DigiBank

Now we can easily switch between the different users as required by clicking on the

tab for the user we want.

__ 32. As DigiBank, let’s change to DigiBank’s application folder:

cd ../../digibank/application/

The full path should be ~/workspace/fabric-getting-started/fabric-

samples/commercial-paper/organization/digibank/application

IBM Blockchain An IBM Proof of Technology

Page 31

 Lab 3

__ 33. Let’s have a look at what files we have in this folder by running:

ls

We can see this is similar to MagnetoCorp’s application folder, but this time we have

three different applications, buy.js, redeem.js and getPaper.js instead of issue.js.

Note: getPaper.js is added as part of this lab, and it is not part of the original

Commercial Paper tutorial. The contents of this file are shown in the appendix to this

lab guide.

__ 34. As before, before we can run anything, we need to download the dependencies

from npm:

npm install

Note: remember this can take a while to complete.

IBM Blockchain An IBM Proof of Technology

Page 32

 Lab 3

__ 35. As we are going to be running as Balaji, we need to load the identity they are going

to use into DigiBank’s wallet, just like we did for Isabella earlier:

node addToWallet.js

__ 36. Let’s take a quick look again at the identity the application copied:

ls ../identity/user/balaji/wallet/

This time you can see the identity is Admin@org1.example.com, as Balaji is acting as

an admin for DigiBank.

IBM Blockchain An IBM Proof of Technology

Page 33

 Lab 3

Just like last time, we can also run another command, we can see the three files that

make up the identity itself:

ls ../identity/user/balaji/wallet/Admin@org1.example.com

Again, these files consist of a private key for signing transactions, a public key linked to

the private key and a file that contains both metadata and a certificate for our user.

Now Balaji from DigiBank would like to buy the commercial paper 00001. However, he

would like to take a look at this paper (00001) on the ledger before he submits the buy

transaction.

IBM Blockchain An IBM Proof of Technology

Page 34

 Lab 3

__ 37. As Balaji from the DigiBank terminal, run this command to take a look at the

commercial paper:

node getPaper.js

However, if we look at the output, we can see that running getPaper.js returns an

error because the “getPaper” transaction does not exist in the commercial paper

smart contract that is currently deployed into the PaperNet network.

So now, we are going to help Balaji implement the new transaction in the commercial

paper smart contract. Although Balaji could do this entirely from the command line,

we are going to use VS Code to help us simplify the process.

__ 38. Switch to the VS Code windows which should already be open, but we will open a

new window so we can start from a clean editor:

Choose the File / New Window menu option

IBM Blockchain An IBM Proof of Technology

Page 35

 Lab 3

__ 39. From the “Welcome” screen choose “Add workspace folder…”:

__ 40. Using the screen shot below as a guide, navigate to open a folder as follows:

Step 1: Click in the workspace folder on the bottom left of the dialogue.

Step 2: Navigate to the folder: fabric-getting-started/fabric-
samples/commercial-paper/organization/digibank/

Step 3: Select the folder contract

Step 4: Click the Add button on the bottom right.

Note: the full path to the contract folder you are importing for reference is:

/home/blockchain/workspace/fabric-getting-started/fabric-

samples/commercial-paper/organization/digibank/contract

Note 2: Make sure you choose the digibank folder and not the magnetocorp one.

IBM Blockchain An IBM Proof of Technology

Page 36

 Lab 3

__ 41. Once the folder is added to the workspace, expand the lib folder and double-click

on the papercontract.js smart contract to open it in the main editing view:

__ 42. We looked at the issue transaction in the papercontract earlier in this lab, but now

we are going to create a new transaction called getPaper. It is going to be a simple

transaction that just returns the paper that was requested as a parameter. We are

going to insert it between the existing instantiate and issue transactions starting on

line 55.

/**
 * Get commercial paper

 * @param {Context} ctx the transaction context

 * @param {String} issuer commercial paper issuer

 * @param {Integer} paperNumber paper number for this issuer

*/

async getPaper(ctx, issuer, paperNumber) {

 try {

 console.log('getPaper for: ' + issuer + ' ' + paperNumber);

 let paperKey = CommercialPaper.makeKey([issuer, paperNumber]);

 let paper = await ctx.paperList.getPaper(paperKey);

 return paper;

 } catch(e) {

 throw new Error('Paper: ' + paperNumber + ' absent for ' + issuer);

 }

}

You can either copy the code above or type it in yourself, but make sure it is correct

and in the right place as shown in the screenshot below:

IBM Blockchain An IBM Proof of Technology

Page 37

 Lab 3

Notice how the new getPaper code is placed after the instantiate transaction finishes,

and before the issue transaction begins.

__ 43. Make sure you save the changes, using the File / Save option or press ctrl + s

Note that when a file has changes pending it will have a filled in circle in its tab:

 when it is saved this will change to an ‘X’:

IBM Blockchain An IBM Proof of Technology

Page 38

 Lab 3

__ 44. When the papercontract.js file is saved, click on the IBM Blockchain Platform icon

in the sidebar to switch to the IBM Blockchain Platform view so we can use IBM

Blockchain Platform to simplify the smart contract upgrade experience.

Now we need to connect VS Code to the running PaperNet network we set up earlier

in this lab. To do this we need to configure a Fabric Environment in VS Code with the

details of the nodes that make up the network.

__ 45. Click on the + in the Fabric Environments panel on the left:

Note: the + only appears when you move your mouse over the Fabric Environments

panel.

__ 46. In the “Enter a name for the environment…” pop up at the top of the screen, enter

PaperNet and press Enter

__ 47. In the “Select all the Fabric node (JSON) files you want to import” pop up at the

top of the screen, click Browse:

IBM Blockchain An IBM Proof of Technology

Page 39

 Lab 3

__ 48. Using the screen shot below as a guide, navigate to open the nodes configuration

file as follows:

Step 1: Click in the workspace folder on the bottom left of the dialogue.

Step 2: Navigate to the folder: fabric-getting-started/fabric-
samples/commercial-paper/organization/digibank/gateway/

Step 3: Select the file networkConnection.json

Step 4: Click the Select button on the bottom right.

Note: the full path to the networkConnection.json file you are importing for

reference is: /home/blockchain/workspace/fabric-getting-started/fabric-

samples/commercial-paper/organization/digibank/gateway/networkConnection

.json

Make sure you choose the digibank folder and not the magnetocorp one. And make

sure you choose the networkConnection.json file.

Note 2: networkConnection .json is added as part of this lab, and it is not part of the

original Commercial Paper tutorial. The contents of this file are shown in the

appendix to this lab guide.

IBM Blockchain An IBM Proof of Technology

Page 40

 Lab 3

__ 49. In the “Add more (JSON) node definitions” pop up at the top of the screen click

“Done adding nodes”

When it is complete you will see this information message

__ 50. Click on the newly created PaperNet Fabric Environment:

This will then change to show that PaperNet needs further setup for three nodes that

were listed in the networkConnection.json file:

There is also an information message with more explanation:

IBM Blockchain An IBM Proof of Technology

Page 41

 Lab 3

__ 51. First, click on peer0.org1.example.com

__ 52. In the pop up at the top of the screen with the message “An admin identity for

“Org1MSP” is required to perform installs.” click “Add new wallet”:

__ 53. As we already have a wallet that we created earlier in this lab, in the pop up choose

“Specify an existing file system wallet”:

__ 54. In the “Enter a file path to a wallet directory” pop up choose “Browse”:

IBM Blockchain An IBM Proof of Technology

Page 42

 Lab 3

__ 55. Using the screen shot below as a guide, navigate to open a wallet folder as follows:

Step 1: Click in the workspace folder on the bottom left of the dialogue.

Step 2: Navigate to the folder: fabric-getting-started/fabric-
samples/commercial-paper/organization/digibank/identity/user/balaji/

Step 3: Select the folder wallet

Step 4: Click the Select button on the bottom right.

Note: the full path to the wallet folder you are importing for reference is:

/home/blockchain/workspace/fabric-getting-started/fabric-

samples/commercial-paper/organization/digibank/identity/user/balaji/

Make sure you choose the digibank folder and not the magnetocorp one. Also make

sure you choose the wallet folder itself and not the Admin@org1.example.com

folder inside it. You should then see an information message saying that the wallet

was added successfully.

IBM Blockchain An IBM Proof of Technology

Page 43

 Lab 3

__ 56. In the “Select the admin identity for Org1MSP” pop up at the top of the screen

choose “Admin@org1.example.com”:

This will trigger an information message showing success:

__ 57. In the “Do you want to associate the same identity with another node?” pop up

at the top of the screen choose “Yes, orderer.example.com”:

This will trigger two information messages showing we have successfully associated

the identity and connected to the PaperNet network:

Finally, in the Fabric Environment view we can now see the papercontract@0.0.3

smart contract that we installed and instantiated earlier in this lab:

IBM Blockchain An IBM Proof of Technology

Page 44

 Lab 3

To change an instantiated contract, Hyperledger Fabric requires that we upgrade the

existing contract to the new version. To do this we must first increment the version

number of the contract and make sure the name of the package will match the contract

we are upgrading.

__ 58. Switch to the Explorer view in VS Code.

Note: If you are having problems and cannot see the Explorer view for any reason,

click on its icon in the activity bar () or press “ctrl + shift + e” to show it.

__ 59. Double click on the package.json file in the contract folder to open it for editing:

Lines two and three of the package.json file define the name and version of the

contract package. Currently the name is papercontract and the version is 0.0.3:

IBM Blockchain An IBM Proof of Technology

Page 45

 Lab 3

__ 60. We can see that the name is correct and matches the contract we have deployed,

but we need to increment the version to 0.0.4:

__ 61. Make sure you save the changes, using the File / Save option or press ctrl + s

__ 62. Switch back to the IBM Blockchain Platform view:

__ 63. From the Smart Contracts pane, click the “More Actions” ‘…’ button to package

the contract:

Note: The ‘…’ only appears when you move your mouse over the Smart Contracts

bar.

IBM Blockchain An IBM Proof of Technology

Page 46

 Lab 3

__ 64. From the pop up menu choose “Package Open Project”:

When the packaging is complete, you will see an informational message:

Also the package will appear in the Smart Contracts pane:

Note: Make sure that your package has got the correct name and version. If it does

not, make sure you enter the correct details in the package.json file as instructed

above and repackage it.

__ 65. To upgrade the contract to the new version that contains our getPaper transaction,

right click on the instantiated papercontract@0.0.3 contract and choose the

Upgrade Smart Contract menu option:

__ 66. From the “Select the smart contract version to perform an upgrade with” pop up

at the top of the screen, choose the papercontract@0.0.4 Packaged option:

IBM Blockchain An IBM Proof of Technology

Page 47

 Lab 3

__ 67. As the instantiate method in our smart contract does not perform and necessary

task, we do not need to call it, so from the “optional: What function do you want to

call…” pop up menu, just press enter:

__ 68. As we are not using private data collections, from the “Do you want to provide a

private data collection configuration file pop up menu, just press enter:

Upgrading a smart contract can take several minutes as a new docker container is

built to contain the new contract. Whilst it is happening you should see this

information message

When it is complete you will see this information message

Once complete, the “Fabric Environments” view will change to show the new

contract papercontract@0.0.4 has been installed and instantiated as part of the

upgrade process:

Now we have upgraded the contract, we need create a new gateway to interact with it

as gateways are the way you connect to a Fabric network.

IBM Blockchain An IBM Proof of Technology

Page 48

 Lab 3

__ 69. Click on the + in the Fabric Gateways panel on the left to add a new gateway:

Note: the + only appears when you move your mouse over the Fabric Gateways

panel.

__ 70. In the “Choose a method to add a gateway” pop up at the top of the screen,

choose “Create a gateway from a Fabric environment”:

Note: We could have created a gateway from a connection profile instead, by using

the profile that comes with the commercial paper sample in the
“~/workspace/fabric-getting-started/fabric-samples/commercial-

paper/organization/digibank/gateway/networkConnection.yaml” folder,

but as we already have an environment we can simplify the process by using it.

__ 71. In the “Enter a name for the gateway…” pop up at the top of the screen, enter

“PaperNet_gw”:

When it has finished an information message will appear:

__ 72. Click on the new PaperNet_gw gateway to connect to the PaperNet network:

IBM Blockchain An IBM Proof of Technology

Page 49

 Lab 3

__ 73. Expand the Channels section and the “myChannel” channel to see the upgraded

contract papercontract@0.0.4. Expand the contract and you will see the new

getPaper transaction is now available:

Note: If you don’t see the getPaper transaction, make sure you edited the Digibank

copy of package.json and papercontract.js.

Let’s run the getPaper transaction from within VS Code

__ 74. Right click on the getPaper transaction and choose Evaluate Transaction:

__ 75. In the pop up at the top of the screen enter "MagnetoCorp,"00001" inside the

array square brackets []. Make sure you include the "" marks around each parameter.

IBM Blockchain An IBM Proof of Technology

Page 50

 Lab 3

__ 76. In the next optional pop up, just press enter as we have no transient data:

If you have entered everything correctly you will see a success information message:

In addition in the output window you will see the paper 00001 data that has been

returned:

However, this data is not very well formatted, so now we will use the DigiBank

getPaper.js command line application which better formats the response.

IBM Blockchain An IBM Proof of Technology

Page 51

 Lab 3

__ 77. Now switch back to DigiBank’s terminal window and run the getPaper command

again as you did earlier in this lab:

node getPaper.js

This time we can see that the transaction was run successfully and we can see that

the paper 00001 was successfully retrieved and that its state is currently ISSUED.

Now Balaji is ready to buy the paper.

IBM Blockchain An IBM Proof of Technology

Page 52

 Lab 3

2.5 Running the Buy and Redeem transactions as DigiBank

__ 78. In the same DigiBank terminal, run the buy application:

node buy.js

As you can see the transaction went through successfully, and paper 0001 is now

owned by DigiBank.

IBM Blockchain An IBM Proof of Technology

Page 53

 Lab 3

__ 79. In the same terminal, let’s run getPaper again to see the current state of the paper

and observe the changes made:

node getPaper.js

Now we can see that the paper indeed owned by DigiBank and that the state of the

paper is currently TRADING. It is still clear that the paper was issued by

MagnetoCorp though.

IBM Blockchain An IBM Proof of Technology

Page 54

 Lab 3

__ 80. Next, let’s assume that the maturity date has been reached and DigiBank wants to

redeem the paper. Also in the DigiBank terminal, let’s run the redeem application as

Balaji:

node redeem.js

Again the transaction has run smoothly, and the paper was redeemed with

MagnetoCorp.

IBM Blockchain An IBM Proof of Technology

Page 55

 Lab 3

__ 81. Let’s run getPaper one more time to see the final state of the paper and observe

the changes made:

node getPaper.js

As you can see, the paper is now in REDEEMED state, and is now owned by

MagnetoCorp again.

Now we have most things working, let’s issue a new commercial paper, but this time

we will go through the steps a little faster.

IBM Blockchain An IBM Proof of Technology

Page 56

 Lab 3

2.6 Issuing another paper as MagnetoCorp

__ 82. Switch to the MagnetoCorp terminal tab and open the issue application in VS Code

so we can edit it for a new paper:

code issue.js

Edit the submitTransaction call on line 68 so we can see some differences from the

previous one. Use 00002 for the paper number to match the rest of this lab. A valid

set of options would be:

'issue','MagnetoCorp','00002','2020-07-31','2020-12-31','6000000'

These will issue paper 00002 at a face value of 6,000,000 USD.

__ 83. Make sure you save the changes, using the File / Save option or press ctrl + s

__ 84. Back in the MagnetoCorp terminal, run the issue command again:

node issue.js

If you edited the file correctly, the transaction will go through and you can see the new

paper was issued matching the new details:

IBM Blockchain An IBM Proof of Technology

Page 57

 Lab 3

2.7 Buying another paper as DigiBank

__ 85. Switch back to DigiBank’s terminal tab and open the getPaper application in VS

Code so we can edit it to retrieve the new paper:

code getPaper.js

Edit the evaluateTransaction call on line 67 so that it retrieves paper 00002.

__ 86. Make sure you save the changes to getPaper.js, using the File / Save option or

press ctrl + s

__ 87. Run the getPaper application so you can confirm that paper 00002 is correct

before we buy it:

node getPaper.js

__ 88. This time we will issue the buy transaction from VS Code for a change. Right click

on the buy transaction for the contract in the gateway and choose Submit

Transaction:

__ 89. In the pop up at the top of the screen enter the arguments:

"MagnetoCorp","00002","MagnetoCorp","DigiBank","5900000","2020-08-20"

and press “Enter”. Make sure you enter the quotes around the strings, but do not add

any extra spaces as otherwise they will be taken as part of the string itself which will

result in an error.

IBM Blockchain An IBM Proof of Technology

Page 58

 Lab 3

__ 90. In the next optional pop up, just press enter as we have no transient data:

When the transaction has finished , if you have entered everything correctly you will

see a success message in the OUTPUT window, along with the information message:

Note: If instead you get an error, you may have entered the string incorrectly. Please

check for an error and try this step again.

__ 91. Once the transaction has been successfully submitted, back in the DigiBank

terminal window, enter node getPaper.js again the see the resulting changes to the

paper. You should see that it is now owned by DigiBank as expected and the status is

TRADING rather than ISSUED.

__ 92. Lastly, repeat the above four steps, but this time call the redeem transaction,

passing the parameters instead:

"MagnetoCorp","00002","DigiBank","2022-12-31"

Once the redeem transaction has been submitted, check that the paper has been

updated correctly again by running node getpaper.js again.

IBM Blockchain An IBM Proof of Technology

Page 59

 Lab 3

2.8 Looking at Errors

__ 93. As a final part of this lab, we will look at how errors are reported back in VS Code.

Open the code for the getPaper transaction in the papercontract.js file. We can see

that if there is an error, such as a paper not being found, it throws an Error exception

back to the caller:

__ 94. Let’s give this a try. Right click on the getPaper transaction and choose Evaluate

Transaction:

__ 95. In the pop up at the top of the screen enter "MagnetoCorp,"00005" inside the

array square brackets [], which is a paper number that we have not created in this lab

and so should not exist. Make sure you include the "" marks around each parameter.

IBM Blockchain An IBM Proof of Technology

Page 60

 Lab 3

__ 96. In the next optional pop up, just press enter as we have no transient data:

If you have entered everything correctly, this time you will see the expected failure

information message reporting the error:

This shows that the contents of the exception thrown in the getPaper transaction has

been reported to the user in the information message. You can also see this message

in the blockchain Output Window as well:

The error message is also reported in a more raw form from the getPaper.js

application in the DigiBank terminal window. To see this, we need to edit the

getPaper.js file again.

__ 97. From the DigiBank terminal window, enter:

code getPaper.js

Edit the evaluateTransaction call on line 67 so that it retrieves paper 00005.

__ 98. Make sure you save the changes to getPaper.js, using the File / Save option or

press ctrl + s

IBM Blockchain An IBM Proof of Technology

Page 61

 Lab 3

__ 99. Run the getPaper application one more time so you can see the error generated:

node getPaper.js

Although we can see the error, we also see the more detailed stack trace leading up to

the error in the client.

__ 100. We have now completed part three of this lab – Connecting to an Existing

Network and we hope you enjoyed it. If you have any time remaining, please feel free

to experiment further on your own, maybe changing one of the command line

applications or even changing and upgrading the contract itself again.

IBM Blockchain An IBM Proof of Technology

Page 62

 Lab 3

3 We Value Your Feedback!

• Please ask your instructor for an evaluation form. Your feedback is very important to us as we

use it to continually improve the lab material.

• If no forms are available, or you want to give us extra information after the lab has finished,

please send your comments and feedback to “blockchain@uk.ibm.com”

IBM Blockchain An IBM Proof of Technology

Page 63

 Lab 3

4 Running the lab on your own machine:

The following Appendixes list the files and changes needed to run this lab outside of the VM

provided so you can try the exercises in your own environment.

Appendix 1 The networkConnection.json file:

This file should be placed into the following folder:

 “fabric-samples/commercial-paper/organization/digibank/gateway”.

[

 {

 "name": "peer0.org1.example.com",

 "api_url": "grpc://localhost:7051",

 "type": "fabric-peer",

 "msp_id": "Org1MSP"

 },

 {

 "name": "orderer.example.com",

 "api_url": "grpc://localhost:7050",

 "type": "fabric-orderer",

 "msp_id": "OrdererMSP"

 }

]

Appendix 2 The getPaper.js file:

This file should be placed into the following folder:

 “fabric-samples/commercial-paper/organization/digibank/application”.

/*

SPDX-License-Identifier: Apache-2.0

*/

/*

 * This application has 6 basic steps:

 * 1. Select an identity from a wallet

IBM Blockchain An IBM Proof of Technology

Page 64

 Lab 3

 * 2. Connect to network gateway

 * 3. Access PaperNet network

 * 4. Construct request to query a commercial paper

 * 5. Submit transaction

 * 6. Process response

 */

'use strict';

// Bring key classes into scope, most importantly Fabric SDK network class

const fs = require('fs');

const yaml = require('js-yaml');

const { FileSystemWallet, Gateway } = require('fabric-network');

const CommercialPaper = require('../contract/lib/paper.js');

// A wallet stores a collection of identities for use

const wallet = new FileSystemWallet('../identity/user/balaji/wallet');

// Main program function

async function main() {

 // A gateway defines the peers used to access Fabric networks

 const gateway = new Gateway();

 // Main try/catch block

 try {

 // Specify userName for network access

 // const userName = 'isabella.issuer@magnetocorp.com';

 const userName = 'Admin@org1.example.com';

 // Load connection profile; will be used to locate a gateway

 let connectionProfile =

yaml.safeLoad(fs.readFileSync('../gateway/networkConnection.yaml', 'utf8'));

 // Set connection options; identity and wallet

 let connectionOptions = {

 identity: userName,

 wallet: wallet,

 discovery: { enabled:false, asLocalhost: true }

 };

 // Connect to gateway using application specified parameters

IBM Blockchain An IBM Proof of Technology

Page 65

 Lab 3

 console.log('Connect to Fabric gateway.');

 await gateway.connect(connectionProfile, connectionOptions);

 // Access PaperNet network

 console.log('Use network channel: mychannel.');

 const network = await gateway.getNetwork('mychannel');

 // Get addressability to commercial paper contract

 console.log('Use org.papernet.commercialpaper smart contract.');

 const contract = await network.getContract('papercontract',

'org.papernet.commercialpaper');

 // get commercial paper

 console.log('Submit commercial paper getPaper transaction.');

 const getPaperResponse = await contract.evaluateTransaction('getPaper',

'MagnetoCorp', '00001');

 // process response

 console.log('Process getPaper transaction response.');

 let paper = CommercialPaper.fromBuffer(getPaperResponse);

 let paperState = "Unknown";

 if(paper.isIssued()) {

 paperState = "ISSUED";

 } else if(paper.isTrading()){

 paperState = "TRADING";

 } else if(paper.isRedeemed()){

 paperState = "REDEEMED";

 }

 console.log(` +--------- Paper Retrieved ---------+ `);

 console.log(` | Paper number: "${paper.paperNumber}"`);

 console.log(` | Paper is owned by: "${paper.owner}"`);

 console.log(` | Paper is currently: "${paperState}"`);

 console.log(` | Paper face value: "${paper.faceValue}"`);

 console.log(` | Paper is issued by: "${paper.issuer}"`);

 console.log(` | Paper issue on: "${paper.issueDateTime}"`);

 console.log(` | Paper matures on: "${paper.maturityDateTime}"`);

 console.log(` +-----------------------------------+ `);

IBM Blockchain An IBM Proof of Technology

Page 66

 Lab 3

 console.log('Transaction complete.');

 //console.log('Transaction complete.' + JSON.stringify(paper));

 } catch (error) {

 console.log(`Error processing transaction. ${error}`);

 console.log(error.stack);

 } finally {

 // Disconnect from the gateway

 console.log('Disconnect from Fabric gateway.')

 gateway.disconnect();

 }

}

main().then(() => {

 console.log('getPaper program complete.');

}).catch((e) => {

 console.log('getPaper program exception.');

 console.log(e);

 console.log(e.stack);

 process.exit(-1);

});

Appendix 3 The fabric-samples\basic-network\docker-

compose.yml file

This file has been edited in this lab to enable discovery which is required for VS Code to

connect to a remote environment. The following line should be added to the environment

section for the peer0.org1.example.com:

CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer0.org1.example.com:7051

