
IBM Blockchain

IBM Blockchain Platform Hands-On

IBM MQ Bridge for Blockchain Lab

Table of Contents

Disclaimer .. 3

Overview of the lab environment and scenario ... 5

1.1 Introduction ... 6

1.2 Lab Overview .. 6

1.3 Scenario.. 7

1.4 Lab Flow ... 8

1.5 Vehicle Lifecycle blockchain network – how it was built .. 8

1.6 Lab Structure .. 9

1 Import ‘Vehicle Lifecycle Network’ Fabric Environment.. 11

1.1 Introduction ... 11

2 Configure Dealer and Regulator MQ Environments .. 18

2.1 Introduction ... 18

3 Configure Dealer/Regulator MQ Bridge for Blockchain .. 22

3.1 Introduction ... 22

4 Review and execute the Dealer Car Application .. 27

4.1 Introduction ... 27

5 Review and execute the Regulator Reporting Application ... 35

5.1 Introduction ... 35

6 Change Car Ownership as Dealer, verify as Regulator ... 39

6.1 Introduction ... 39

7 Audit History of Previous Ownership as Regulator .. 42

7.1 Introduction ... 42

8 We Value Your Feedback! ... 48

Appendix 1: Lab Environment ... 49

Appendix 2: Creating the MQ Bridge Configuration file .. 50

Appendix 3: Teardown custom Vehicle Lifecycle network .. 51

Appendix 4: Description of files used in this lab .. 52

IBM Blockchain An IBM Proof of Technology

Page 3

 IBM MQ Bridge for Blockchain Lab

Disclaimer
IBM’s statements regarding its plans, directions, and intent are subject to change or

withdrawal without notice at IBM’s sole discretion. Information regarding potential future

products is intended to outline our general product direction and it should not be relied on in

making a purchasing decision.

The information mentioned regarding potential future products is not a commitment, promise,

or legal obligation to deliver any material, code or functionality. Information about potential

future products may not be incorporated into any contract.

The development, release, and timing of any future features or functionality described for our

products remains at our sole discretion I/O configuration, the storage configuration, and the

workload processed. Therefore, no assurance can be given that an individual user will achieve

results like those stated here.

Information in these presentations (including information relating to products that have not

yet been announced by IBM) has been reviewed for accuracy as of the date of

initial publication and could include unintentional technical or typographical errors. IBM shall

have no responsibility to update this information. This document is distributed “as is”

without any warranty, either express or implied. In no event, shall IBM be liable for any

damage arising from the use of this information, including but not limited to, loss of data,

business interruption, loss of profit or loss of opportunity. IBM products and services are

warranted per the terms and conditions of the agreements under which they are provided.

IBM products are manufactured from new parts or new and used parts.

In some cases, a product may not be new and may have been previously installed. Regardless,

our warranty terms apply.

Any statements regarding IBM's future direction, intent or product plans are subject to

change or withdrawal without notice.

Performance data contained herein was generally obtained in controlled,

isolated environments. Customer examples are presented as illustrations of how those

customers have used IBM products and the results they may have achieved. Actual

performance, cost, savings or other results in other operating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM

intends to make such products, programs or services available in all countries in which

IBM operates or does business.

IBM Blockchain An IBM Proof of Technology

Page 4

 IBM MQ Bridge for Blockchain Lab

Workshops, sessions and associated materials may have been prepared by independent

session speakers, and do not necessarily reflect the views of IBM. All materials and

discussions are provided for informational purposes only, and are neither intended to, nor shall

constitute legal or other guidance or advice to any individual participant or their specific

situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to

obtain advice of competent legal counsel as to the identification and interpretation of any

relevant laws and regulatory requirements that may affect the customer’s business and any

actions the customer may need to take to comply with such laws. IBM does not provide legal

advice or represent or warrant that its services or products will ensure that the customer

follows any law.

Information concerning non-IBM products was obtained from the suppliers of those products,

their published announcements or other publicly available sources. IBM has not tested

those products about this publication and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the capabilities of

non-IBM products should be addressed to the suppliers of those products. IBM does not

warrant the quality of any third-party products, or the ability of any such third-party products

to interoperate with IBM’s products. IBM expressly disclaims all warranties, expressed or

implied, including but not limited to, the implied warranties of merchantability and fitness

for a purpose.

The provision of the information contained herein is not intended to, and does not, grant any

right or license under any IBM patents, copyrights, trademarks or other intellectual

property right.

IBM, the IBM logo, ibm.com and [names of other referenced IBM products and services used in

the presentation] are trademarks of International Business Machines Corporation, registered in

many jurisdictions worldwide. Other product and service names might be trademarks of IBM or

other companies. A current list of IBM trademarks is available on the Web at "Copyright and

trademark information" at: www.ibm.com/legal/copytrade.shtml.

© 2020 International Business Machines Corporation. No part of this document may be

reproduced or transmitted in any form without written permission from IBM.

U.S. Government Users Restricted Rights — use, duplication or disclosure restricted by

GSA ADP Schedule Contract with IBM.

http://www.ibm.com/legal/copytrade.shtml

IBM Blockchain An IBM Proof of Technology

Page 5

 IBM MQ Bridge for Blockchain Lab

Overview of the lab environment and scenario

Note: The screenshots in this lab guide were taken using version 1.43.2 of VS Code, and version

1.0.26 of the IBM Blockchain Platform extension. If you use different versions, you may see

differences from those shown in this guide. Please note that any commands you are asked to

execute in a terminal, can be copied and pasted from the lab guide. Also, from section 4

onwards, you will repeat some commands to launch a Dealer or Regulator applications; you

can simply hit the UP or DOWN arrow, to scroll back/forward to a previous command.

Steps:

Start here. Instructions are always shown on numbered lines like this one:

__ 1. If it is not already running, start the virtual machine for the lab. Your instructor will tell

you how to do this if you are unsure.

__ 2. Wait for the image to boot and for the associated services to start. This happens

automatically but might take several minutes. The image is ready to use when the

desktop is visible as per the screenshot below.

Note: If it asks you to login, the user id and password are both “blockchain”.

IBM Blockchain An IBM Proof of Technology

Page 6

 IBM MQ Bridge for Blockchain Lab

1.1 Introduction
This lab shows how to integrate IBM MQ, a messaging solution for applications, with a

Hyperledger Fabric blockchain network. Two organisations participate in a vehicle lifecycle

business network; each uses an application to record or query changes to vehicle records on

the shared ledger. Applications post MQ messages on application queues – as such, they do

not need to understand ‘where’ the blockchain is. The runtime for integrating IBM MQ queues

with the Fabric network is provided by the IBM MQ Bridge for Blockchain. An instance of the

bridge runs in each organisation; it processes application messages on input/request queues in

IBM MQ, issues smart contract transactions to the blockchain and manages the

responses/results returned, passing them back to the applications to consume.

1.2 Lab Overview
The lab outlines how to integrate applications, that are MQ enabled to be able to interact with a

blockchain ledger. In the lab, you complete some basic configuration steps in IBM MQ and for

the IBM MQ Bridge for Blockchain, to integrate with the running Fabric network. You then run

applications that test the end-to-end integration. The lab emphasises the application

perspective; i.e. showing how the IBM MQ Bridge for Blockchain component abstracts away

technical complexity. For applications, it’s ‘business as usual’ – see diagram for an overview.

IBM Blockchain An IBM Proof of Technology

Page 7

 IBM MQ Bridge for Blockchain Lab

1.3 Scenario
The scenario follows two application users Dino and Ron, from a Dealer and a Regulator

organisation in a business network. Each uses their respective applications to create or query

car records – e.g. the dealer creates a car record, the regulator queries car records. Whilst

creating or querying records on the blockchain, you also will examine the structure of MQ

messages that go to/from the blockchain, such as a create car request or a reply message from

a smart contract transaction. You will also configure a bridge, to connect MQ to the blockchain.

IBM Blockchain An IBM Proof of Technology

Page 8

 IBM MQ Bridge for Blockchain Lab

1.4 Lab Flow
The diagram shows the Dealer and the Regulator interacting with the blockchain network. The

message flow on the left (numbered 1 through 5) shows the Dealer message flow for the

createCar sequence. On the right , steps 6 through 10, show the Regulator message flow,

for the queryCar sequence. The bridge component picks up requests from a request queue,

and posts responses on a reply queue, which their respective applications consume.

1.5 Vehicle Lifecycle blockchain network – how it was built
The lab uses a custom Hyperledger Fabric network built using Ansible, based on a template in

the IBM Blockchain Github repo at: https://github.com/IBM-Blockchain/ansible-

examples/tree/master/two-org-network. Ansible is an open source configuration and

deployment automation tool. The VM comes with a running, two organization Fabric network –

the ansible script that built this is called site.yml under the mqbridge/hlf-ansible

folder. No knowledge of Ansible is required for this lab.

The network uses one Fabric channel, fabchannel1. Each Peer uses CouchDB as the State

Database. The IBM Blockchain Platform for VS Code extension has a built-in feature to import

the Fabric environment (i.e. import all Fabric nodes, gateways and wallets/identities generated

by Ansible).

The ansible script also instantiates a Fabcar smart contract (fabcar@1.0.1) on channel

fabchannel1.

https://github.com/IBM-Blockchain/ansible-examples/tree/master/two-org-network
https://github.com/IBM-Blockchain/ansible-examples/tree/master/two-org-network
mailto:fabcar@1.0.1

IBM Blockchain An IBM Proof of Technology

Page 9

 IBM MQ Bridge for Blockchain Lab

Footnote: for this lab, custom organisation names (Dealer, Regulator) and identities are used,

to make lab scenarios easier to read and execute - hence why the custom network was built.

You could adapt this lab for your own purposes, to use the standard, built-in ‘Two Org’

network, under the ‘Fabric Environments’ view in the IBM Blockchain Platform VS Code

extension – but would use standard names like Org1 and Org2 and use administrative

identities like ‘admin’ for performing the equivalent tasks in this lab. See diagram for overview.

1.6 Lab Structure
This lab steps are structured into an overview section and 7 distinct lab parts:

The overview describes the lab aims and Lab environment, including the scenario and how the

lab flows. It also describes how the custom blockchain network was built.

Part 1 of the lab takes you through Importing the Vehicle Lifecycle Fabric network An

ansible script was executed prior to this lab to bring up the two-organisation Fabric network;

you will complete the setup by importing the Fabric environment, using a new feature in the

IBM Blockchain Platform VS Code extension.

Part 2 of this lab will configure Dealer and Regulator MQ environments, to create Queue

Managers (one for each Org) and Server Connection channels, so that application clients can

connect to MQ queues to send requests to the blockchain. You will also create sample Queue

IBM Blockchain An IBM Proof of Technology

Page 10

 IBM MQ Bridge for Blockchain Lab

definitions in each Queue Manager. All MQ configuration steps are completed using a

combination of bash and MQ batch scripts.

Part 3 of this lab will focus on configuring the Dealer and Regulator IBM MQ Bridge for

Blockchain components, namely the requisite information required in the bridge, for IBM MQ

Advanced server to be able to interact with the blockchain network. You will carry out the

manual configuration steps for the Dealer bridge component and Dealer MQ environment.

Part 4 of this lab provides insight into reviewing and running the Dealer App environment;

you will review key information about the Dealer Node.JS application. You will perform a test

message from the App, so that they can be examined in MQ Explorer – then start the bridge for

the Dealer organisation to process it. Next, you will complete an end-to-end transaction

(createCar) showing the Dealer App consuming the response for that transaction, from the

blockchain.

Part 5 of this lab provides an insight into reviewing and running the Regulator App

environment; similar to Part 4 – this time, you start the bridge component for the Regulator

organisation, then launch the Regulator App, and query the details of car(s) created by the

Dealer.

Part 6 of this lab shows an end-to-end Change Car Ownership transaction where the Dealer

changes the owner of a car. You will then carry out a verify pattern using the Regulator App;

user Ron (Regulator) queries the car details, to show the current ownership on the ledger.

Part 7 of this lab deals with Audit history of Previous Ownership, as the Regulator. The

Dealer user performs another series of changes to create a history of owners. The Regulator

queries the history of previous ownership for the car in question, to reveal that history from the

ledger.

Note: that if you get a “Software Updater” pop-up at any point during the lab, please click

“Remind Me Later”:

IBM Blockchain An IBM Proof of Technology

Page 11

 IBM MQ Bridge for Blockchain Lab

1 Import ‘Vehicle Lifecycle Network’ Fabric

Environment

1.1 Introduction

This section of the lab covers the import of the custom Vehicle Lifecycle network. The

Virtual Machine (VM) you are using, has already executed an Ansible playbook to

create the Fabric network, comprising Dealer and Regulator network members. You

now need to import this Fabric environment in the IBM Blockchain VS Code extension,

as a single step. After this step, you can interact with the imported Nodes, Wallets and

Gateways that are part of the blockchain network.

Steps:

__ 3. VS Code may already be running from a previous lab exercise, but if not, launch VS

Code by clicking on the VS Code icon in the toolbar.

IBM Blockchain An IBM Proof of Technology

Page 12

 IBM MQ Bridge for Blockchain Lab

__ 4. When VS Code opens, click on the IBM Blockchain Platform icon in the Activity Bar in

VS Code as shown below.

Let’s browse the Ansible “playbook” file (site.yml) that deployed the Fabric network;

you do this from a terminal window in the mqbridge/hlf-ansible subdirectory.

IBM Blockchain An IBM Proof of Technology

Page 13

 IBM MQ Bridge for Blockchain Lab

__ 5. Open a terminal window from the Ubuntu task bar:

__ 6. Copy and paste the following commands in the terminal window:

 cd ~/workspace/mqbridge/hlf-ansible
more site.yml

(When using the “more” command, Press the spacebar for “Next Screen”.)

__ 7. Although the Fabric network is built, the containers need to be started – execute the

start.sh bash script as follows (with leading “.” below) to start up the containers.

./start.sh

IBM Blockchain An IBM Proof of Technology

Page 14

 IBM MQ Bridge for Blockchain Lab

__ 8. Next, verify that the 8 expected containers are running for the Vehicle Lifecycle Fabric

network, using the following docker command:

 docker ps --format 'table {{.Names}}:\t {{.Ports}}'

The output (example above) should confirm the network is running.

Now import this Fabric environment (i.e. the Fabric nodes/wallets/gateways) using the

import Fabric environment feature in the IBM Blockchain Platform VS Code extension.

__ 9. Back in the VS Code extension, click the ‘+’ sign in Fabric Environments to add a new

environment

__ 10. When prompted, choose to Add an Ansible created network from the list

IBM Blockchain An IBM Proof of Technology

Page 15

 IBM MQ Bridge for Blockchain Lab

__ 11. Browse to the directory “Home” > blockchain > workspace > mqbridge > hlf-ansible

and then highlight the vehicle folder and click Select on the bottom right. This folder is

where the artefacts for the Fabric environment (to match the running network) reside.

__ 12. Specify the name Vehicle (upper-case ‘V’) for your two organization Vehicle Lifecycle

network and hit enter.

In the output you should see it was successfully added

__ 13. Under Fabric Environments, click on Vehicle to verify you can successfully connect

to the new environment – confirmation of this is shown in the Output panel.

__ 14. Next, under Fabric Gateways, click on the Vehicle - regulatorOrg_gw gateway and

when prompted, connect as the identity Ron from the list of identities offered.

IBM Blockchain An IBM Proof of Technology

Page 16

 IBM MQ Bridge for Blockchain Lab

__ 15. Expand the channel fabchannel1…. then expand the contract twisty for

fabcar@1.0.1 – it will take a number of seconds (spinning icon) to reveal the list of

transactions (you are bringing up the Regulator organization’s chaincode container).

The two-organization network, including all identities, gateways and nodes under the

‘vehicle’ subdirectory in the hlf-ansible folder, is ready for use in VS Code. You will

now need to export Connection Profiles, for use later by the IBM MQ Bridge for

Blockchain component (one exported profile for each org).

__ 16. On the Fabric Gateways panel click Disconnect from the Regulator Gateway using

the disconnect icon

__ 17. Hover over on the gateway Vehicle - dealerOrg_gw and right-click … Export

Connection Profile

__ 18. Export the file with the name dealerOrg_gw_connection.json (remove the leading

‘Vehicle – ‘ prefix, incl. the '–') and export it to the workspace/mqbridge folder:

mailto:fabcar@1.0.1

IBM Blockchain An IBM Proof of Technology

Page 17

 IBM MQ Bridge for Blockchain Lab

__ 19. Using steps 17 – 18 as a guide, hover over the Vehicle – regulatorOrg_gw gateway

and right-click … Export Connection Profile to the same folder as above – export it as

the filename regulatorOrg_gw_connection.json .

In the next section, you will focus on configuring IBM MQ for both the Dealer and

Regulator organizations.

Review

In this section you have:

• Examined an Ansible playbook (site.yml) that built the vehicle lifecycle

blockchain network used in this lab.

• Executed a single step to import the running Fabric environment, including

Nodes, Wallets and Gateways then connected to the environment.

• Exported connection profiles for both the Dealer and Regulator environments,

for inclusion in the IBM MQ Bridger for Blockchain configuration steps later.

IBM Blockchain An IBM Proof of Technology

Page 18

 IBM MQ Bridge for Blockchain Lab

2 Configure Dealer and Regulator MQ Environments

2.1 Introduction

This section executes the IBM MQ (“MQ”) configuration needed for this lab. MQ

application queues (defined in Queue Managers) and MQ channels are required for

both the client applications and the MQ Bridge instances – each will post or process

messages.

The steps to create these MQ artefacts are automated using bash scripts and ‘MQSC’

batch commands (more info in Appendix 4) – these are run for the Dealer and

Regulator MQ environments. Once done, the Node.JS applications can interact with

MQ, as well as the IBM MQ Bridge for Blockchain – you will configure this later.

An INPUT Queue (to receive application messages) and a REPLY queue (blockchain

results) are created for each organisation. You will review queues using MQ Explorer

(MQ Explorer comes with IBM MQ – it is a UI, that is very useful for administering MQ,

performing tasks/operations and checking the status of MQ objects).

Steps:

__ 20. Using the Ubuntu Explorer, enter the letters MQ to find the MQ Explorer application:

__ 21. Drag the MQ icon onto the task bar on the left - press Escape to leave the Ubuntu

Explorer

IBM Blockchain An IBM Proof of Technology

Page 19

 IBM MQ Bridge for Blockchain Lab

__ 22. Return to the terminal window and change directory to HOME > blockchain >

workspace > mqbridge subdirectory, run the following command to create the Queue

Managers and Channels for both the Dealer and the Regulator.

cd ..

./createQMgrs.sh

You should get confirmation that the sequence of steps was successful:

__ 23. From the same subdirectory /home/blockchain/workspace/mqbridge, run

the createQs.sh script to create the Application Queues:

./createQs.sh

 See output next page

IBM Blockchain An IBM Proof of Technology

Page 20

 IBM MQ Bridge for Blockchain Lab

From the output, you should see messages that two Queues were created (as well as

certain security settings being disabled for this lab).

__ 24. Start MQ Explorer by clicking on the icon you dragged to the left task bar, and verify

that you can see two queues (INPUT and REPLY) for each of Dealer_QM1 and

Regulator_QM1 queue managers by navigating to the Queue Managers….Queues

folder.

Example of the INPUT and REPLY queues for the Dealer Queue Manager:

IBM Blockchain An IBM Proof of Technology

Page 21

 IBM MQ Bridge for Blockchain Lab

And an example of the INPUT and REPLY queues for the Regulator Queue Manager

OK. You have now completed the MQ Configuration setup steps in the lab.

Review

In this part of the Lab you have:

• Created application Queue Managers for Dealer and Regulator in IBM MQ.

• Created application input and reply queues in each Queue Manager and applied

channel and security settings on the Queue Manager via MQ command files.

IBM Blockchain An IBM Proof of Technology

Page 22

 IBM MQ Bridge for Blockchain Lab

3 Configure Dealer/Regulator MQ Bridge for Blockchain

3.1 Introduction

In this section, you configure the IBM MQ Bridge for Blockchain – an instance of the

bridge runs for each of the organisations. Once configured, they will be launched and

the bridge monitors designated Queues; INPUT application queues for blockchain

transactions, and REPLY queues for the bridge to post responses / blockchain results -

the application consumes the results. Applications do not need to know anything

about the blockchain network setup – IBM MQ Bridge handles this. The applications

are aware of IBM MQ only.

When you configure the MQ Bridge for Blockchain component for the first time, using a

CLI based configuration program called runmqbcb - it simply asks a series of

questions and creates a configuration file based on your answers. More information in

the IBM MQ Bridge for Blockchain configuration can be found here

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/

q130890_.htm and in Appendix 2 of this guide.

You will go through the steps to create the Bridge; it will need to know information

about the blockchain network it is connecting with, the identity it will use, and MQ

configuration details (like queue manager, queue names).

Steps:

__ 25. In a terminal window ensure you are in the directory

/home/blockchain/workspace/mqbridge/

cd /home/blockchain/workspace/mqbridge/

__ 26. Set the MQ environment variable (note the leading ‘.’ below sets in the current shell)

. /opt/mqm/bin/setmqenv -s -k

There is no output from this command – it simply sets some environment variables.

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q130890_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q130890_.htm

IBM Blockchain An IBM Proof of Technology

Page 23

 IBM MQ Bridge for Blockchain Lab

__ 27. Launch the IBM MQ Bridge for Blockchain configuration tool as follows:

runmqbcb -o student_bridgeconfig_dealer.cfg

You are asked to provide answers to questions interactively – use the answers in BOLD

in column 2 below. In some cases, hit enter to accept the [default], or leave it blank:

(For some of the longer Answers, you might like to cut and paste the values from the

table.)

Parameter Answer

-------- ------ Connection to Queue Manager questions ------

Queue Manager Dealer_QM1

Input Queue APPL1.BLOCKCHAIN.INPUT.QUEUE

MQ Channel APPL.CLIENT.SVRCONN

MQ Conname 127.0.1.1(1414)

MQ CCDT URL <leave blank>

JNDI implementation class Hit enter (accept the default [com.sun.jndi.fscontext.RefFSContextFactory])

JNDI provider URL Hit enter <leave blank>

MQ UserId Hit enter <leave blank>

MQ Password Hit enter <leave blank>

-------- ------ Fabric Configuration ------

Network Configuration file /home/blockchain/workspace/mqbridge/dealerOrg_gw_connection.json

Wallet
/home/blockchain/workspace/mqbridge/hlf-

ansible/vehicle/wallets/dealerOrg

User Name Dino

Certificate Hit enter <leave blank>

Private Key Hit enter <leave blank>

Organisation dealerOrgMSP

Commit Timeout Hit enter (accept default of [15])

Network Discovery Hit enter (accept default of [N])

Updates wait for all Peers? Hit enter (accept default of [Y])

Updates sent to all organisations? Hit enter (accept default of [N])

-------- ------ Certificate Stores for MQ TLS connections ------ (no TLS used)

Personal keystore Hit enter <leave blank>

Keystore Password Hit enter <leave blank>

Trusted store for signer certs Hit enter <leave blank>

Trusted store password Hit enter <leave blank>

-------- ------ Behaviour of bridge program ------

Runtime logfile for stdout/stderr /home/blockchain/workspace/mqbridge/dealer-bridge.log

IBM Blockchain An IBM Proof of Technology

Page 24

 IBM MQ Bridge for Blockchain Lab

Number of logfiles Hit enter (accept default of [3])

Maximum size of each logfile Hit enter (accept default of [2097152])

The completed output of your configuration will look something like the following:

Upon completion, a “Done” message confirms the configuration is written to file.

If any of the values are incorrect, simply delete student_bridgeconfig_dealer.cfg and

rerun the runmqbcb command.

IBM Blockchain An IBM Proof of Technology

Page 25

 IBM MQ Bridge for Blockchain Lab

__ 28. From the /home/blockchain/workspace/mqbridge/ directory run the following

command in the terminal to peruse the created Dealer MQ bridge configuration file:

code student_bridgeconfig_dealer.cfg

Line 4: the Network Path to the gateway connection profile to be used by a running MQ

Bridge for Blockchain, exported via the IBM Blockchain Platform VS Code extension to

the subdirectory “HOME”/workspace/mqbridge/. There are two files, one for each

organisation.

Line: 8-9: the identity to use for sending requests and the organisation MSP of the

identity

Line 11-12: Wallet location for identities being used and the MQ queue name that

applications can post to, so that the Bridge component can process using a proscribed

format, then submit the request via the SDK to that organisations peer.

Line 18-19: Details about the MQ channel the client application can connect to, so it

can post messages to a designated queue – and the TCP and listener port address for

the Queue Manager.

Line 22: provide details of the Queue Manager name that the application queue

resides in, with which to connect to from the IBM MQ Bridge for Blockchain

component.

Similarly, a configuration file called bridgeconfig_regulator.cfg, (created as

preparation for this lab) configures the Regulator bridge component.

IBM Blockchain An IBM Proof of Technology

Page 26

 IBM MQ Bridge for Blockchain Lab

Each running IBM MQ Bridge instance connects through separate Fabric gateway

connection files; these were earlier exported using the IBM Blockchain Platform for VS

Code extension. This file path is reflected in the variable BCNetworkPath above.

__ 29. Close the VS Code session when you’re finished browsing the file by clicking on the

‘x’ for the configuration file

__ 30. The IBM MQ Bridge components for Dealer and Regulator, use bash scripts to launch

their components in the background. The bash scripts (one for Dealer bridge, one for

Regulator bridge) look for filenames bridgeconfig_dealer.cfg and

bridgeconfig_regulator.cfg upon launch and use ‘known configurations’. You can

compare your Dealer bridge file (File: student_bridgeconfig_dealer.cfg) against the

master file (bridgeconfig_dealer.cfg) using the Linux diff command, to check if your

configuration steps completed correctly.

From the terminal window, still in the /home/blockchain/workspace/mqbridge

subdirectory, paste in the following command:

diff student_bridgeconfig_dealer.cfg bridgeconfig_dealer.cfg

If there is no output from the command, then you have provided all the right answers,

well done – if there is actual output from the command, then a wrong value may have

been provided in the question and answer configuration steps (but you can still

continue anyway).

This concludes this part of the lab. With the MQ and MQ Bridge Components now

configured for the Dealer and the Regulator, you will turn your attention to:

• Testing out car transactions using the dealer and regulator applications;

• Showing the messages deposited on the MQ queues (ie with no bridge running

yet) in MQ Explorer

• Starting the Dealer bridge you configured and see it connect to the Queue

Manager, then forward the stored request to the blockchain, then you will

check the blockchain response in MQ Explorer.

• Test the complete end-to-end application to blockchain integration; creating

the car (Dealer) and displaying status results – then performing queries from

the application and seeing results from the ledger (as Regulator).

IBM Blockchain An IBM Proof of Technology

Page 27

 IBM MQ Bridge for Blockchain Lab

Review

In this part of the Lab you have:

• Performed the steps to configure the Dealer’s IBM MQ Bridge for Blockchain

• Explored and reviewed the key settings for configuring the Bridge, both for the

Dealer and the Regulator bridge configurations.

4 Review and execute the Dealer Car Application

4.1 Introduction

In this section will look at how the bridge connects to IBM MQ and the blockchain and

review stored MQ messages when the bridge is not yet running. You will review the

Node.JS based dealer application, understand (at a high level) how it sends/receives

messages. Finally, you will carry out end-to-end transactions using the Dealer

application, creating cars on the blockchain, getting results back to display in the

application. The same applies to blockchain queries via the Regulator application. This

final section will see both bridge components running, and processing MQ messages.

The files being used for the Dealer application consist of:

dealer.js – This is the main application file. It launches as a CLI application, with a

menu to create cars with specific car IDs. Upon selection of an ID, a message

containing a JSON request is sent to MQ and deposited on an INPUT queue. This is

processed by MQ Bridge, and a transaction request sent to the blockchain network

using a blockchain identity. The bridge puts the response from the blockchain into an

MQ REPLY queue. The application tracks the reply to the original create car request,

and the result is displayed in the dealer application.

inquirechoices.js – this file is the interactive component of the Dealer application that

requests inputs – invoked by dealer.js, it enables a user to select a car from a list –

and uses the npm module inquirer

clientcfg.json is a metadata configuration file, which contains a list of JSON

transaction request structures, such as Queue Manager names, and transaction

selectors that the dealer App uses, when it asks the user to select a car identifier. After

a car is selected in the dealer App, it sends a transaction to the blockchain via MQ

Bridge. The clientcfg.json file contains entries that consist of ‘create’ request

operations (and some car query/history requests, for the Regulator app later).

IBM Blockchain An IBM Proof of Technology

Page 28

 IBM MQ Bridge for Blockchain Lab

runDealerApp.sh sets up the Queue Manager (QM) connection info. Uses the

MQSERVER variable to locate the dealer QM and the communication method to be

used to connect. Once set, the bash script calls the dealer.js Node.js file so the MQ

Client APIs can connect to the queue manager.

Steps:

First, initialise the ledger with some sample car data as identity Dino. You do this by

executing the Fabcar initLedger smart contract transaction. After, you will run the

Dealer Application and see the end-to-end MQ to blockchain integration in action.

__ 31. Back in the IBM Blockchain Platform VS Code extension, connect to the Dealer

gateway dealerOrg_gw as Dino

__ 32. Expand fabchannel1 followed by the Fabcar smart contract and select the

initLedger transaction then right-click and Submit Transaction

When prompted, press enter three times to accept the defaults: that is, no

parameters, no transient data, and accept the default peer-targeting policy respectively

– on the bottom right, a message indicates that the transaction was submitted.

IBM Blockchain An IBM Proof of Technology

Page 29

 IBM MQ Bridge for Blockchain Lab

Next, you will start the Car Dealer application. Note that you won’t yet start the IBM

MQ Bridge component for the Dealer organisation; this is so that you can first examine

the MQ input request message (by the Dealer app) from inside MQ Explorer, before

going on to then start the Bridge. Once up and running, it will process any queued

request messages, and handle the interaction with the Dealer’s blockchain network.

__ 33. Return to the main terminal window and start up the Dealer client application (in its

own window) from /home/blockchain/workspace/mqbridge/mqapp

cd mqapp

gnome-terminal --tab -e ./runDealerApp.sh --geometry=160x40

__ 34. Select the first car id MQCAR11 from the list and press enter. (Each menu entry

describes some attribute values that the car will be created with)

The create car action is confirmed on screen as shown below and submitted as a

request to the application queue. The application window will close itself, as part of the

lab, please note – you will get no response (as the message has only gone to MQ so far)

At this point, the queued application message should be visible in MQ Explorer.

IBM Blockchain An IBM Proof of Technology

Page 30

 IBM MQ Bridge for Blockchain Lab

__ 35. Switch back to MQ Explorer. Select queue manager ‘Dealer_QM1’ followed by the

input queue APPL1.BLOCKCHAIN.INPUT.QUEUE and right click….Browse Messages

then scroll to the right to see the column Message Data, it contains the smart contract

JSON request.

Click close to close the Message browser.

__ 36. Back in the terminal window, launch the Dealer Bridge component in the background

– copy/paste this command (the bash script is one directory level up):

gnome-terminal --tab -e ../runDealerBridge.sh --geometry=100x10

The Dealer bridge is now running in a background window, bottom left, and ready to

process queue messages for the Dealer’s network. The queued message from earlier is

automatically processed - and as a result, should create a new car record with

MQCAR11 on the blockchain. To check the car was created, return to the IBM

Blockchain Platform VS Code extension in VS Code.

IBM Blockchain An IBM Proof of Technology

Page 31

 IBM MQ Bridge for Blockchain Lab

__ 37. In the Fabric Gateways view, right click on the transaction queryCar and right-click

... Evaluate Transaction

__ 38. Ensure the parameters you enter are as follows (in [] square brackets):

["MQCAR11"]

Press enter twice, to accept the defaults for the transient data and peer targeting

prompts. Review the output in the Output pane – you should see the query result

shows that the car was created successfully, from the MQ request message.

Note that we will also have a blockchain response now – because the transaction was

submitted successfully. The Dealer Bridge has placed this response on the REPLY

queue (i.e. in APPL1.BLOCKCHAIN.REPLY.QUEUE), for the Dealer App to consume.

Let’s look at the response in MQ Explorer.

__ 39. In MQ Explorer, return to the Queue list in the Queue Manager ‘Dealer_QM1’, select

the APPL1.BLOCKCHAIN.REPLY.QUEUE queue and right click…Browse Messages –

IBM Blockchain An IBM Proof of Technology

Page 32

 IBM MQ Bridge for Blockchain Lab

__ 40. Scroll to the right to see the message data – and it shows the response that was

returned from the fabcar smart contract, ready for processing by an application. It

shows a completion response of ‘OK’.

Click on Close to close the message browser window.

At this point - you’ve seen how the messages appear in MQ Explorer. Next, you will do

an end-to-end transaction within the application by creating another new car record. As

an application could have many messages on the same reply queue, the application

needs to process transaction responses against the original car creation request.

__ 41. Switch back to the terminal, and from the mqapp subdirectory, enter the following

command to clear the REPLY queue. We want to discard this response for now – the

following bash script executes MQ queue operations to clear queues. Note the leading

two ‘..’ is important here.

../clearQs.sh

IBM Blockchain An IBM Proof of Technology

Page 33

 IBM MQ Bridge for Blockchain Lab

__ 42. From the main terminal, launch the Car Dealer application from the mqapp directory

using the following command sequence:

 gnome-terminal --tab -e ./runDealerApp.sh --geometry=160x40

This time select car MQCAR12 from the list and press enter – again, it describes some

attribute values that this car will be created with.

The Bridge processes the request, and returns a response from the blockchain, via MQ:

IBM Blockchain An IBM Proof of Technology

Page 34

 IBM MQ Bridge for Blockchain Lab

__ 43. Next, return to the IBM Blockchain Platform VS Code extension icon – you want to

verify the creation of car MQCAR12 using the smart contract query. Execute the

transaction queryCar as the Dealer Org by performing right-click…Evaluate in the

smart contract view, providing a parameter exactly as shown below:

["MQCAR12"]

You have now successfully demonstrated end-to-end integration, all the way back to

the application itself. You have also verified the creation of car assets; the first

processed after the Bridge component was started; the second, as an end-to-end

transaction. You then performed a direct query on the ledger to verify this.

This concludes this section of the lab.

Review

In this part of the Lab you have:

• Successfully examined MQ messages and requests (as well as responses)

processing by the Dealer organisation’s IBM MQ Bridge for Blockchain.

• Successfully carried out end-to-end transactions as the Dealer user Dino and

seen the end-to-end integration at play.

IBM Blockchain An IBM Proof of Technology

Page 35

 IBM MQ Bridge for Blockchain Lab

5 Review and execute the Regulator Reporting

Application

5.1 Introduction

In this section, you will now look at the Regulator perspective and its application

environment. The regulator’s role on the network is to perform compliance checks, eg

cross-verify car ownership records on the shared ledger. Like the Dealer, the Regulator

application clients use MQ APIs to talk to IBM MQ. Before you use the Regulator App,

you first need to start the Regulator organisation’s IBM MQ Bridge for blockchain.

The Regulator Bridge configuration contains different parameters to that of the Dealer

bridge configuration details.

Steps:

__ 44. From the terminal window in subdirectory

/home/blockchain/workspace/mqbridge/mqapp, open the Regulator bridge

configuration file in VS Code:

code ../bridgeconfig_regulator.cfg

IBM Blockchain An IBM Proof of Technology

Page 36

 IBM MQ Bridge for Blockchain Lab

In the file, there are a few settings that you can point out straight away:

Line 4: The location of the Regulator’s Fabric gateway connection profile; this is

required for the MQ Bridge to know of the Regulator’s member blockchain network

nodes

Line 9: The organisational MSP for the regulator

Line 11-12: The wallet location (containing identities) and the INPUT queue that the

bridge will examine for application requests in the Regulator’s application queue

manager.

Line 18-19: The Channel connection details for the application clients to make a

connection to this queue manager – this is on a different port (1415) to that previous

shown for the Dealer, not least because you are running on the same machine

Line 22: Regulator’s Queue Manager name, that you created earlier in the lab.

__ 45. Close the configuration file and return to the main terminal window, and still in the

mqapp subdirectory, launch the regulator IBM MQ Bridge component in the

background as follows:

gnome-terminal --tab -e ../runRegBridge.sh --geometry=100x10

IBM Blockchain An IBM Proof of Technology

Page 37

 IBM MQ Bridge for Blockchain Lab

You will see a persistent window (usually top right) indicating the bridge is ready.

(Tip: If the window closes in a few seconds, it’s likely that you didn’t export the

Regulator’s gateway connection profile in the VS Code extension, per step 16 earlier)

__ 46. Back in the main terminal, launch the Regulator App (in a new window) as follows:

gnome-terminal --tab -e ./runRegApp.sh --geometry=160x40

__ 47. In the Regulator App, choose to query the current ownership record of the first car,

MQCAR11 (Q for Query) and press enter

IBM Blockchain An IBM Proof of Technology

Page 38

 IBM MQ Bridge for Blockchain Lab

The output confirms the details of the car and ownership – take note of who owns the

car at this present time (bottom right). (Note that the application window closes itself

after approx. 5-6 seconds – you can re-run the query app at any time).

Just like the Dealer application earlier, query requests for the blockchain get posted to

a designated Regulator INPUT queue in IBM MQ. Again, these are processed by the IBM

MQ Bridge for Blockchain. After submitting the smart contract query transaction, the

bridge returns the results for the car ID queried, and displays the information in the

Regulator App.

That concludes this section of the lab.

Review

In this part of the Lab you have:

• Successfully examined the configuration of the Regulator organisation’s IBM

MQ Bridge for Blockchain.

• Successfully carried out end-to-end transactions as the Regulator user Ron and

seen the end-to-end integration at play.

IBM Blockchain An IBM Proof of Technology

Page 39

 IBM MQ Bridge for Blockchain Lab

6 Change Car Ownership as Dealer, verify as Regulator

6.1 Introduction

This section shows a typical lifecycle change in the vehicle lifecycle network – i.e. car

ownership changes. The Dealer App is also used to update the ownership records. The

smart contract transaction that performs this in Fabcar is called changeCarOwner .

Later, the Regulator will query the car’s details on the blockchain, to see the change of

ownership on the ledger.

Steps:

__ 48. From the main terminal window, launch the Dealer App this time:

gnome-terminal --tab -e ./runDealerApp.sh --geometry=160x40

__ 49. Under the CHANGE OWNER menu (the 2nd menu), select the first car MQCAR11C

(for “change”) - press enter; the >><< chevrons, means the new owner is ‘Illy Rodrigo’

The Dealer App should confirm that the update to the ledger was successful

IBM Blockchain An IBM Proof of Technology

Page 40

 IBM MQ Bridge for Blockchain Lab

The message window will close automatically after approx. 5 seconds.

Now let’s check the car record as identity Ron, using the Regulator App

__ 50. From the existing command line, launch the Regulator App as follows:

gnome-terminal --tab -e ./runRegApp.sh --geometry=160x40

__ 51. In the Regulator App, once again, choose to query the record of the first car,

MQCAR11 and press enter

The output confirms the details of the car and ownership – it is now owned by its new

owner, ‘Illy Rodrigo’. Again, the application will close itself in approx. 5 seconds.

IBM Blockchain An IBM Proof of Technology

Page 41

 IBM MQ Bridge for Blockchain Lab

__ 52. Let’s verify this from the IBM Blockchain Platform VS Code extension, by executing a

query on car ‘MQCAR11’ and verify the same change ownership transaction performed

by the application matches what you would expect. Return to the VS Code extension.

__ 53. In the Fabric Gateways view, still connected as the Dealer gateway, right-click on

the transaction queryCar and click ... Evaluate Transaction

__ 54. Ensure the parameters you enter are as follows (in [] square brackets):

["MQCAR11"]

Press enter twice to accept the defaults for the transient data and peer targeting

prompts. Review the output in the Output pane – you should see the query result from

the ledger shows that the car ownership is what you saw in the application earlier.

You’ve now verified the end-to-end changes made by the application to the system of

record (the ledger); once from the application and once using the smart contract

transaction via the VS Code extension.

This concludes this section of the lab.

IBM Blockchain An IBM Proof of Technology

Page 42

 IBM MQ Bridge for Blockchain Lab

Review

In this part of the Lab you have:

• Successfully performed end-to-end transactions as the Dealer user Dino and

seen the end-to-end integration at play to show the current car ownership as

supplied by the blockchain system of record.

7 Audit History of Previous Ownership as Regulator

7.1 Introduction

In the last section of this lab, you carry out another typical application function:

querying the history of previous owners for a vehicle. The Regulator uses their

application to check on the history of previous owners of a selected car.

In the steps below, you will use the Dealer App again, to update the ownership record

of car MQCAR11 , return ownership back to owner “Tom O Shanter”, then perform

another ownership change to “Illy Rodrigo” – this conveniently provides a trail of 3

previous owners (Tom, Illy, and Tom again) and the current owner – Illy Rodrigo. The

Regulator can then query the car on the blockchain, to see the history of previous

owners.

Steps:

__ 55. From the main terminal window, still in the mqapp subdirectory, launch the Dealer

App:

 gnome-terminal --tab -e ./runDealerApp.sh --geometry=160x40

IBM Blockchain An IBM Proof of Technology

Page 43

 IBM MQ Bridge for Blockchain Lab

Select the car MQCAR11 and hit enter (Note: this is simply running the “create”

transaction again, but it has the effect of updating the existing car record for MQCAR11

– in the process, it will update the current owner back to Tom OShanter - and thus

making Illy Rodrigo a previous owner on the ledger record for this car):

Car MQCAR11 gets updated on the ledger, and Illy Rodrigo becomes a previous owner

in the car’s history. Again, note that the application window closes itself.

__ 56. Launch the Dealer app again:

gnome-terminal --tab -e ./runDealerApp.sh --geometry=160x40

IBM Blockchain An IBM Proof of Technology

Page 44

 IBM MQ Bridge for Blockchain Lab

__ 57. Select car MQCAR11C under the Change Owner sub-menu and hit enter – this time,

the current owner becomes Illy Rodrigo once again, adding another ownership change

(and Tom OShanter effectively becomes a ‘previous owner’).

You should get confirmation that the update was successful.

Next, you can check out the ownership history of car MQCAR11 - as the Regulator. It

should reveal the history of previous owners, as a result of the transactions earlier.

__ 58. Launch the Regulator App from the terminal window as follows:

gnome-terminal --tab -e ./runRegApp.sh --geometry=160x40

IBM Blockchain An IBM Proof of Technology

Page 45

 IBM MQ Bridge for Blockchain Lab

__ 59. Inside the Regulator App, choose to query the current ownership record of the first

car, MQCAR11 (Q for Query) and press enter – it will reveal Illy Rodrigo as the current

owner.

__ 60. Finally, launch the Regulator App once again, to query the history of previous owners

gnome-terminal --tab -e ./runRegApp.sh --geometry=160x40

__ 61. Under ‘QUERY HISTORY OF PREVIOUS OWNERS’ submenu – select ‘MQCAR11H’ (H

for history) and hit enter:

IBM Blockchain An IBM Proof of Technology

Page 46

 IBM MQ Bridge for Blockchain Lab

Once again, the query request gets processed, the application consumes the response

provided by the bridge. You will get a history of previous owners displayed inside the

application – there should be three previous owners on the right (see below). Note

again, the window will close itself after 5 seconds

__ 62. Return to the IBM Blockchain VS Code extension, and under the Fabric Gateways

view, disconnect from the Dealer’s gateway, then click on Vehicle - regulatorOrg_gw,

and choose Ron as the identity to connect with:

__ 63. Highlight the getPreviousOwners and right-click….Evaluate

IBM Blockchain An IBM Proof of Technology

Page 47

 IBM MQ Bridge for Blockchain Lab

__ 64. When prompted, Ensure the parameters you enter are as follows (in [] square

brackets):

["MQCAR11"]

Press enter twice to accept the defaults for the transient data and peer targeting

prompts. Review the output in the Output pane – you should see the query result

shows that the previous ownership history matches exactly what you saw in the

Regulator application.

You’ve now seen two perspectives to verify the application ownership history of car

MQCAR11, as a result of ownership changes ; one via the application query response

(that is returned via MQ); the other, by directly querying the ledger via smart contract

transaction getPreviousOwners.

Optional Lab - try out a different car ID from the Dealer app: that is: 1) create a car

(say MQCAR13 from the menu), then 2) change car ownership as shown and finally 3)

verify current and previous ownership history, using the Regulator app menu and verify

using the smart contract query using getPreviousOwners.

This concludes this section of the lab.

Review

In this part of the Lab you have:

• Successfully created a chain of car ownership history as Dino using the Dealer

App.

• Successfully audited the car’s ownership history on the blockchain ledger,

firstly through the Regulator Application (routes requests via IBM MQ and the

IBM MQ Bridge for Blockchain) and then querying the ledger directly using the

IBM Blockchain Platform VS Code extension, and a smart contract query.

:

IBM Blockchain An IBM Proof of Technology

Page 48

 IBM MQ Bridge for Blockchain Lab

8 We Value Your Feedback!

• Your feedback is very important to us as we use it to continually improve the lab

material.

• To give us feedback after the lab has finished, please send your comments to

“blockchain@uk.ibm.com”

IBM Blockchain An IBM Proof of Technology

Page 49

 IBM MQ Bridge for Blockchain Lab

Appendix 1: Lab Environment

This appendix provides more information on how this lab environment is configured in this

environment.

As mentioned in the introduction of the lab guide, the sample applications (Dealer and

Regulator App) are Node.JS based samples, that consume the IBM MQ APIs to be able to put

and get messages from/to the IBM MQ Advanced Server queues – more info on that here

https://github.com/ibm-messaging/mq-mqi-nodejs/blob/master/README.md .

The Regulator and Dealer (docker based) member networks are built and configured by

Ansible and is all located local see more https://github.com/IBM-Blockchain/ansible-role-

blockchain-platform-manager/blob/master/README.md .

The bridge configuration tool to create configurations is called runmqbcb– it asks a series of

questions to create configuration files, and based on parameters set for the respective

Dealer/Regulator bridge instances. See

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q13088

0_.htm#q130880_ and for more info on the configuration tool, see

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q13089

0_.htm

More information on the configuration tool and how to create IBM MQ Bridge for Blockchain

configuration files is described in the next Appendix.

https://github.com/ibm-messaging/mq-mqi-nodejs/blob/master/README.md
https://github.com/IBM-Blockchain/ansible-role-blockchain-platform-manager/blob/master/README.md
https://github.com/IBM-Blockchain/ansible-role-blockchain-platform-manager/blob/master/README.md
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q130880_.htm#q130880_
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q130880_.htm#q130880_
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q130890_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q130890_.htm

IBM Blockchain An IBM Proof of Technology

Page 50

 IBM MQ Bridge for Blockchain Lab

Appendix 2: Creating the MQ Bridge Configuration file

The IBM MQ Bridge MQ component has a configuration tool to generate its Bridge

configuration file for an organisation’s member network. To answer the questions

asked by the interactive CLI tool, you need the parameters from your blockchain

network credentials file, and from your IBM MQ Advanced queue manager that your

application ultimately interacts with. Once the IBM Bridge Component is installed, you

would run the tool using the following command (once you’ve set your environment

using setmqenv etc) eg.

runmqbcb -o config_file_name.cfg

As you’ve seen for the Dealer bridge, it offers some default values, for given parameter

fields - these are shown inside the square brackets []. As you answer the questions,

you can press Enter to accept existing values, press Space then Enter to clear existing

values (eg if you have re-run the tool, pointing at the same output config file), and type

inside the brackets then press Enter to add new values. You can separate lists of

values by commas, or by entering each value on a new line. A blank line ends the list.

Note: You cannot edit the existing values. You can keep, replace, or clear them.

 You’ll need to enter values for the connection to your IBM MQ Advanced queue

manager. Minimum values that are needed for the connection are the queue manager

name, and the names of the bridge input and reply queues. For connections to remote

queue managers, you will also need MQ Channel and MQ Conname (host address and

port where the queue manager is running). To use TLS, for connecting to IBM MQ

Advanced Server - you must use JNDI or CCDT and specify MQ CCDT URL or JNDI

implementation class and JNDI provider URL accordingly.

IBM Blockchain An IBM Proof of Technology

Page 51

 IBM MQ Bridge for Blockchain Lab

Appendix 3: Teardown custom Vehicle Lifecycle network

The following steps are used to tear down the custom Fabric network that contains the

Regulator / Dealer network.

1. In VS Code, disconnect any connected Fabric Environment.

2. Right click on any Fabric Environment for DealerOrg and RegulatorOrg and Delete

Environment (Remember to click yes in the bottom corner of the screen)

3. In a terminal window, run the following commands to clear up the “custom” Fabric:

 cd ~/workspace/mqbridge/hlf-ansible

 ./teardown.sh

4. Observe that the containers are stopped and removed.

IBM Blockchain An IBM Proof of Technology

Page 52

 IBM MQ Bridge for Blockchain Lab

Appendix 4: Description of files used in this lab

List of files and description of customisations applied by folder

Under the HOME/workspace/monitoring subdirectory, a few folders exist containing the

configuration / client files used to complete this IBM Blockchain Platform monitoring lab

First let’s describe the files/folders in the main directory (above) alphabetically, then their

contents in turn:

File Description Comments

bridgeconfig_dealer.cfg This is the IBM MQ Bridge for

Blockchain configuration file for the

Dealer organisation. It is created as a

result of launching the IBM MQ Bridge

for Blockchain configuration tool, as

described in more detail in Appendix

2.

bridgeconfig_regulator.cfg As above, but for the Regulator

organisation. Again, this is described

in more detail in Appendix 2.

clearQs.sh Well, it clears Queues – there is a

lab step where this script is launched

– as at that point the Queue needs

clearing before proceeding.

createQMgrs.sh Bash script to create the Queue

Managers

createQs.sh This script runs a sequence of

operations from an MQ script files, to

IBM Blockchain An IBM Proof of Technology

Page 53

 IBM MQ Bridge for Blockchain Lab

create queues automatically and

conveniently, with the correct names

and also the Listeners and Server

Channel connection definitions.

createQueues.mqsc An MQ SCript file (.mqsc suffix), that

carries out some queue creations and

associated security / authorization

updates that are required

createLstnr_Dealer.mqsc Creates the Listener (port 1414) and

Server Channel for Dealer_QM1 queue

manager

createLstnr_Regulator.mqsc Creates the Listener (port 1415) and

Server Channel for Regulator_QM1

queue manager

createLstnr_Dealer.mqsc

mq_install.sh This script was used to install the IBM

MQ Advanced Server solution,

including the IBM MQ Bridge for

Blockchain component

runDealerBridge.sh This launches the IBM MQ Bridge for

Blockchain listener, so that it can

manage requests/responses between

the Dealer’s MQ queues, and the

Dealer’s blockchain network.

runRegBridge.sh Exactly as above, except launches the

bridge component for the Regulator

organisation and the Regulator’s MQ

queues and its blockchain network.

Folder: fabcar: This folder contains the source Hyperledger Fabric Sample Fabcar client app.

It has bash script wrappers, to generate a transaction workload against the smart contract

deployed to IBM Blockchain Platform – all files are in the ‘javascript’ sub-folder

File Description Comments

fabcars.js Fabcar Smart contract source

code – contains a series of

transactions to initialise the

ledger, create or update cars,

and query car ownership or

the history of previous owners

The fabcar101.cds file is already

packaged and this is imported from

the hlf-ansible subdirectory under

‘mqbridge’ please note

package.json The Node.JS package file,

describing package name,

npm dependencies etc etc.

IBM Blockchain An IBM Proof of Technology

Page 54

 IBM MQ Bridge for Blockchain Lab

Folder: hlf-ansible: This is the ansible playbook directory – it contains the ansible playbook

site.yml that builds the Hyperledger Fabric network containing two organisations.

File/Folder Description Comments

contracts Contains the fabcar@101.cds

file and the source code it was

built from. ownership or the

history of previous owners

The fabcar101.cds file is already

packaged so it can be

installed/instantiated by the ansible

playbook.

README.md Ansible readme file

deploy.sh The bash script that builds the

Ansible docker image,

launches it and performs the

installation of the two-

organisation Fabric network

Builds both the Dealer and the

Regulator blockchain environments

for this MQ Bridge lab.

requirements.yml Describes the Ansible role

used to interpret the playbook

instructions

site.yml This the custom ansible

playbook that created the

Fabric network and associated

artifacts. Can be torn down

using teardown.sh

This creates the Nodes, gateways

and wallets, to enable a single

import of the Vehicle Lifecycle

Fabric environment, comprising two

organisations.

start.sh Docker start the dockerized

two organisation network, if it

was previously stopped or if

you are at the beginning of the

lab

stop.sh Docker stop the dockerized

two organisation network, if it

was previously started.

teardown.sh Tears down the dockerized

Fabric network, including its

related images, and including

pruning old chaincode images.

The script also removes the nodes,

wallets and gateways and the

ansible subdirectory ‘vehicle’ – so

that a new deploy can be carried

out.

IBM Blockchain An IBM Proof of Technology

Page 55

 IBM MQ Bridge for Blockchain Lab

Folder: mqapp: This contains all the Dealer and Regulator Application client code. It is from

here that the Node.JS applications are launched and where the Node.JS dependencies are

installed.

File/Folder Description Comments

clientcfg.json This file contains the matching

Fabric blockchain JSON

requests, that are matched,

when a user using the

respective Dealer or Regulator

Apps select a car (from the

menu) to create or query: a

selected car matches the

corresponding operation in

this .json file – and that

operation (in an MQ message)

is what gets posted by the IBM

MQ Bridge for Blockchain

component to the blockchain.

The Node.JS Apps use menu

selection, then match on the entry in

clientcfg.json, to issue the correct

JSON operation to the IBM MQ

Bridge for Blockchain

dealer.js This is the Node.JS application

for the Dealer App

This gets launched by

runDealerApp.sh

inquirechoices.js This contains the inquirer

module that enables the menu

and menu prompts to be

created. The menu in this file

is customised for the Dealer

App

package.json The Node.JS application

package definition

reg-inquirechoices.js Exactly the same as

inquirechoices.js, except it has

the Regulator App menu

choices.

regulator.js This is the Node.JS application

for the Regulator App.

This gets launched by runRegApp.sh

runDealerApp.sh This is the bash ‘wrapper’

script that launches the Dealer

App ; it also sets the MQ

connection information, so the

application knows how to

connect to the Dealer’s Queue

Manager in MQ

IBM Blockchain An IBM Proof of Technology

Page 56

 IBM MQ Bridge for Blockchain Lab

runRegApp.sh This is the bash ‘wrapper’

script that launches the

Regulator App ; it also sets the

MQ connection information, so

the application knows how to

connect to the Regulator’s

Queue Manager in MQ

