IBM Blockchain

IBM Blockchain Platform Hands-On

IBM MQ Bridge for Blockchain Lab

Table of Contents

DISCLAIMEK ...t ettt et e st e st e st e e s ate s be e sae e e bt e eaeesabeennnens 3
Overview of the lab environment and SCENANOc.ceiiiiiieriiieeeeee e 5
L1 INEFOAUCTION ceiiiiiieeee ettt e s eab e s sare e s sae e s e e e sneeeas 6
1.2 LD OVEIVIEW it 6
R B Vol = - T [0 SO PO PP PPRRPPRPROPP 7
L4 LD FLOW ettt 8
1.5 Vehicle Lifecycle blockchain network —how it was built........cccceeveeiiiiicis 8
1.6 LA STrUCTUI e 9
1 Import ‘Vehicle Lifecycle Network’ Fabric ENVIronmMeNnt.......cc.oeeieecieeeeeiieee e 11
J S R N { o Te (¥ ot 4o T3 OO P RO P RS PRURRRPRTRIOt 11
2 Configure Dealer and Regulator MQ ENVIrONMENTS.......uuiieeeiiiieecciieecccieeeeecee e eevee e 18
2.1 INEFOAUCTION ettt sttt et e st e b e st e e bt e s e e s e e s e e e neesnneenns 18
3 Configure Dealer/Regulator MQ Bridge for Blockchain........coooeeciiiiieiiiiieccccieeeeee e 22
3.1 INTFOAUCTION ceiiiiieeeee e e s e s e s b e e s nae e s 22
4 Review and execute the Dealer Car AppliCationeeeeeciieeieicieee e 27
A1 INEFOAUCTION ceeieiiieete ettt sttt e s e st e st e s st e s b e e sme e e bt e s seesseesmneenneenns 27
5 Review and execute the Regulator Reporting Application.........ccccuveeeeeiiieeecciieee e 35
5.1 INTrOQUCTION ettt ettt e e e s ese e e s enb e e s e e e snee s 35
6 Change Car Ownership as Dealer, verify as Regulatorccccoviiieeeiie e, 39
6.1 INTrOUCTION et 39
7 Audit History of Previous Ownership as Regulatoreeeeeiieeieciiieecciee e 42
/2% N 1o (o T [V [t £ T o IS TSROSO PS VSRR 42
8 We Value YOUr FEEADACK!oieiieee ettt 48
AppendixX 1: Lab ENVIFONMENT ..ccciiieee ettt e e e e aae e e e e ennre e e e e aaaa e e e ennraeas 49
Appendix 2: Creating the MQ Bridge Configuration fil€.......ccceccueeeeeciiieecciiee e, 50
Appendix 3: Teardown custom Vehicle Lifecycle NetWork.......ccceeeeecveeeeccciiee e, 51

Appendix 4: Description of files used in this lab........cceoviiiniiiiniiieee 52

IBM Blockchain An IBM Proof of Technology

Disclaimer

IBM’s statements regarding its plans, directions, and intent are subject to change or
withdrawal without notice at IBM’s sole discretion. Information regarding potential future
products is intended to outline our general product direction and it should not be relied on in
making a purchasing decision.

The information mentioned regarding potential future products is not a commitment, promise,
or legal obligation to deliver any material, code or functionality. Information about potential
future products may not be incorporated into any contract.

The development, release, and timing of any future features or functionality described for our
products remains at our sole discretion I/O configuration, the storage configuration, and the
workload processed. Therefore, no assurance can be given that an individual user will achieve
results like those stated here.

Information in these presentations (including information relating to products that have not
yet been announced by IBM) has been reviewed for accuracy as of the date of

initial publication and could include unintentional technical or typographical errors. IBM shall
have no responsibility to update this information. This document is distributed “as is”
without any warranty, either express or implied. In no event, shall IBM be liable for any
damage arising from the use of this information, including but not limited to, loss of data,
business interruption, loss of profit or loss of opportunity. IBM products and services are
warranted per the terms and conditions of the agreements under which they are provided.

IBM products are manufactured from new parts or new and used parts.
In some cases, a product may not be new and may have been previously installed. Regardless,
our warranty terms apply.

Any statements regarding IBM's future direction, intent or product plans are subject to
change or withdrawal without notice.

Performance data contained herein was generally obtained in controlled,

isolated environments. Customer examples are presented as illustrations of how those
customers have used IBM products and the results they may have achieved. Actual
performance, cost, savings or other results in other operating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM
intends to make such products, programs or services available in all countries in which
IBM operates or does business.

Page 3
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

Workshops, sessions and associated materials may have been prepared by independent
session speakers, and do not necessarily reflect the views of IBM. All materials and
discussions are provided for informational purposes only, and are neither intended to, nor shall
constitute legal or other guidance or advice to any individual participant or their specific
situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to
obtain advice of competent legal counsel as to the identification and interpretation of any
relevant laws and regulatory requirements that may affect the customer’s business and any
actions the customer may need to take to comply with such laws. IBM does not provide legal
advice or represent or warrant that its services or products will ensure that the customer
follows any law.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested

those products about this publication and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the capabilities of
non-IBM products should be addressed to the suppliers of those products. IBM does not
warrant the quality of any third-party products, or the ability of any such third-party products
to interoperate with IBM’s products. IBM expressly disclaims all warranties, expressed or
implied, including but not limited to, the implied warranties of merchantability and fitness
for a purpose.

The provision of the information contained herein is not intended to, and does not, grant any
right or license under any IBM patents, copyrights, trademarks or other intellectual
property right.

IBM, the IBM logo, ibm.com and [names of other referenced IBM products and services used in
the presentation] are trademarks of International Business Machines Corporation, registered in
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or
other companies. A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at: www.ibm.com/legal/copytrade.shtml.

© 2020 International Business Machines Corporation. No part of this document may be
reproduced or transmitted in any form without written permission from IBM.

U.S. Government Users Restricted Rights — use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM.

Page 4
IBM MQ Bridge for Blockchain Lab

http://www.ibm.com/legal/copytrade.shtml

IBM Blockchain An IBM Proof of Technology

Overview of the lab environment and scenario

Note: The screenshots in this lab guide were taken using version 1.43.2 of VS Code, and version
1.0.26 of the IBM Blockchain Platform extension. If you use different versions, you may see
differences from those shown in this guide. Please note that any commands you are asked to
execute in a terminal, can be copied and pasted from the lab guide. Also, from section 4
onwards, you will repeat some commands to launch a Dealer or Regulator applications; you
can simply hit the UP or DOWN arrow, to scroll back/forward to a previous command.

Steps:

Start here. Instructions are always shown on numbered lines like thisD

—

__1.Ifitis not already running, start the virtual machine for the lab. Your instructor will tell
you how to do this if you are unsure.

__ 2. Wait for the image to boot and for the associated services to start. This happens
automatically but might take several minutes. The image is ready to use when the

desktop is visible as per the screenshot below.

Note: If it asks you to login, the user id and password are both “blockchain”.

Page 5

IBM MQ Bridge for Blockchain Lab

IBM Blockchain

1.1 Introduction

An IBM Proof of Technology

This lab shows how to integrate IBM MQ, a messaging solution for applications, with a
Hyperledger Fabric blockchain network. Two organisations participate in a vehicle lifecycle
business network; each uses an application to record or query changes to vehicle records on
the shared ledger. Applications post MQ messages on application queues — as such, they do
not need to understand ‘where’ the blockchain is. The runtime for integrating IBM MQ queues
with the Fabric network is provided by the IBM MQ Bridge for Blockchain. An instance of the
bridge runs in each organisation; it processes application messages on input/request queues in
IBM MQ, issues smart contract transactions to the blockchain and manages the
responses/results returned, passing them back to the applications to consume.

1.2 Lab Overview

The lab outlines how to integrate applications, that are MQ enabled to be able to interact with a
blockchain ledger. In the lab, you complete some basic configuration steps in IBM MQ and for
the IBM MQ Bridge for Blockchain, to integrate with the running Fabric network. You then run
applications that test the end-to-end integration. The lab emphasises the application
perspective; i.e. showing how the IBM MQ Bridge for Blockchain component abstracts away
technical complexity. For applications, it’s ‘business as usual’ — see diagram for an overview.

DEALER (W)

IBM MO BRIDGE

IBM MQ ADVANCED SERVER EOR BLOCKCHAIN

Dealer

LAB OVERVIEW

FABRIC
CONNECTION
PROFILE

FABRIC
CONMNECTION
PROFILE

FABRIC BLOCKCHAIN NETWORK

fabear
SMART
CONTRACT

Instantiated contract

Page 6

REGULATOR (R)

IBM MQ, BRIDGE

FOR BLOCKCHAIN IBM MO ADVANCED SERVER

Regulator
Application

IBM MQ Bridge for Blockchain Lab

IBM Blockchain

1.3 Scenario
The scenario follows two application users Dino and Ron, from a Dealer and a Regulator
organisation in a business network. Each uses their respective applications to create or query
car records — e.g. the dealer creates a car record, the regulator queries car records. Whilst
creating or querying records on the blockchain, you also will examine the structure of MQ
messages that go to/from the blockchain, such as a create car request or a reply message from
a smart contract transaction. You will also configure a bridge, to connect MQ to the blockchain.

MQ QUEUE MANAGER MQ BRIDGE
DEALER_QM1
createCar request| createCar|submit
—]
INPUT
QUEUE <
| Respohse
¥
REPLY
QUEUE
+ BRIDGE
K CONFIG
Connection Channel
R
MQ CLIENT
Blockchain
Wallet

! ‘

createCar txn createCar txn
request (JSON) Response
j=============
I Dealer APP (.js)

I

L e e e e - — — — —

VEHICLE LIFECYCLE NETWORK

CONNECTION
PROFILE

An IBM Proof of Technology

REGULATOR (R)

CONNECTION
TWO ORGS FABRIC PROFILE MO, BRIDGE MQ QUEUE MANAGER
BLOCKCHAIN NETWORK a aa
REGULATOR_QM1
query|Car query ueryCar request
— ikl ek d agerylar reque
INPUT
QUEUE
Refponse |
v 4
REPLY
QUEUE
BRIDGE 4
CONFIG [Connection Channel :|
fabcar M
MQ CLIENT
SMART CONTRACT Blockchain |
- wallet l T
queryCar txn queryCar txn
+ Instantiated contract response request (JSON)
=== =-"=-"=-"=-"=-======
:: Regulator APP (.js)
L o o - — — — — — —

Page 7

IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

1.4 Lab Flow
The diagram shows the Dealer and the Regulator interacting with the blockchain network. The
message flow on the left (numbered 1 through 5) shows the Dealer message flow for the
createCar sequence. On the right, steps 6 through 10, show the Regulator message flow,
for the queryCar sequence. The bridge component picks up requests from a request queue,
and posts responses on a reply queue, which their respective applications consume.

CONNECTION CONNECTION
MQ QUEUE MANAGER MQ BRIDGE PROFILE TWO ORGS FABRIC PROFILE
BLOCKCHAIN NETWORK MQ BRIDGE MQ QUEUE MANAGER
DEALER_QM1 REGULATOR_QM1
createCar request] createCar|submit -« quiw qwst
INPUT o o INPUT
QUEUE < < QUEUE
<+ « «—
| Respopse Response |
+ * r Yy
REPLY @ @ REPLY
QUEUE QUEUE
* BRIDGE BRIDGE 4
CONFIG
| Connection Channel CONFIG Connection Channel
v A\ J
MQ CLIENT fabcar MQ CLIENT
Blockchain SMART CONTRACT Blockchain
Wallet Wallet
° 0] @
v
createCar txn createCar txn) query(’iar txn queryCar txn
request (JSON) Response v Instantiated contract response request (ISON)
=== ===~~~ =-=-=-===7 f===--=-=-=-=-=-=-=—=—=7=~1
I
Il i
I Dealer APP [js) I :: Regulator APP (.js)
Lo | L ___

1.5 Vehicle Lifecycle blockchain network — how it was built
The lab uses a custom Hyperledger Fabric network built using Ansible, based on a template in
the IBM Blockchain Github repo at: https://github.com/IBM-Blockchain/ansible-
examples/tree/master/two-org-network. Ansible is an open source configuration and
deployment automation tool. The VM comes with a running, two organization Fabric network —
the ansible script that built this is called site.yml under the mgbridge/hlf-ansible
folder. No knowledge of Ansible is required for this lab.

The network uses one Fabric channel, fabchannell. Each Peer uses CouchDB as the State
Database. The IBM Blockchain Platform for VS Code extension has a built-in feature to import
the Fabric environment (i.e. import all Fabric nodes, gateways and wallets/identities generated
by Ansible).

The ansible script also instantiates a Fabcar smart contract (fabcar@21.0.1) on channel
fabchannell.

Page 8
IBM MQ Bridge for Blockchain Lab

https://github.com/IBM-Blockchain/ansible-examples/tree/master/two-org-network
https://github.com/IBM-Blockchain/ansible-examples/tree/master/two-org-network
mailto:fabcar@1.0.1

IBM Blockchain An IBM Proof of Technology

Footnote: for this lab, custom organisation names (Dealer, Regulator) and identities are used,
to make lab scenarios easier to read and execute - hence why the custom network was built.
You could adapt this lab for your own purposes, to use the standard, built-in “Two Org’
network, under the ‘Fabric Environments’ view in the IBM Blockchain Platform VS Code
extension — but would use standard names like Orgl and Org2 and use administrative
identities like ‘admin’ for performing the equivalent tasks in this lab. See diagram for overview.

Custom Vehicle Lifecycle (Fabcar) Network

dealerOrg regulatorOrg

dealerOrghiSP @ . regulatorOrghMSP

fabchannel1

CA: Certificate Authority .
P: Peer Orderer

S: Smart Contract ordererlSP
08S: Ordering Service
MS5P: Membership Services Provider (identifies the organization on the network)

1.6 Lab Structure
This lab steps are structured into an overview section and 7 distinct lab parts:

The overview describes the lab aims and Lab environment, including the scenario and how the
lab flows. It also describes how the custom blockchain network was built.

Part 1 of the lab takes you through Importing the Vehicle Lifecycle Fabric network An
ansible script was executed prior to this lab to bring up the two-organisation Fabric network;
you will complete the setup by importing the Fabric environment, using a new feature in the
IBM Blockchain Platform VS Code extension.

Part 2 of this lab will configure Dealer and Regulator MQ environments, to create Queue
Managers (one for each Org) and Server Connection channels, so that application clients can
connect to MQ queues to send requests to the blockchain. You will also create sample Queue

Page 9
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

definitions in each Queue Manager. All MQ configuration steps are completed using a
combination of bash and MQ batch scripts.

Part 3 of this lab will focus on configuring the Dealer and Regulator IBM MQ Bridge for
Blockchain components, namely the requisite information required in the bridge, for IBM MQ
Advanced server to be able to interact with the blockchain network. You will carry out the
manual configuration steps for the Dealer bridge component and Dealer MQ environment.

Part 4 of this lab provides insight into reviewing and running the Dealer App environment;
you will review key information about the Dealer Node.JS application. You will perform a test
message from the App, so that they can be examined in MQ Explorer — then start the bridge for
the Dealer organisation to process it. Next, you will complete an end-to-end transaction
(createCar) showing the Dealer App consuming the response for that transaction, from the
blockchain.

Part 5 of this lab provides an insight into reviewing and running the Regulator App
environment; similar to Part 4 — this time, you start the bridge component for the Regulator
organisation, then launch the Regulator App, and query the details of car(s) created by the
Dealer.

Part 6 of this lab shows an end-to-end Change Car Ownership transaction where the Dealer
changes the owner of a car. You will then carry out a verify pattern using the Regulator App;
user Ron (Regulator) queries the car details, to show the current ownership on the ledger.

Part 7 of this lab deals with Audit history of Previous Ownership, as the Regulator. The
Dealer user performs another series of changes to create a history of owners. The Regulator
queries the history of previous ownership for the car in question, to reveal that history from the
ledger.

Note: that if you get a “Software Updater” pop-up at any point during the lab, please click
“Remind Me Later”:

™ ® software Updater

Updated software is available For this
computer. Do you want to install it now?

* Details of updates

Unknown download size.

Settings... I Remind Me Later I Install Now

Page 10
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

1 Import ‘Vehicle Lifecycle Network’ Fabric
Environment

1.1 Introduction

This section of the lab covers the import of the custom Vehicle Lifecycle network. The
Virtual Machine (VM) you are using, has already executed an Ansible playbook to
create the Fabric network, comprising Dealer and Regulator network members. You
now need to import this Fabric environment in the IBM Blockchain VS Code extension,
as a single step. After this step, you can interact with the imported Nodes, Wallets and
Gateways that are part of the blockchain network.

Steps:

__3.VS Code may already be running from a previous lab exercise, but if not, launch VS
Code by clicking on the VS Code icon in the toolbar.

1 @) 2:13PM 3

Page 11
IBM MQ Bridge for Blockchain Lab

IBM Blockchain

An IBM Proof of Technology

__4.When VS Code opens, click on the IBM Blockchain Platform icon in the Activity Bar in

VS Code as shown below.

) welcome x

Visual Studio Code
Editing evolved

Start

Show welcome page on startup

@0/ 0 Blockchain Home

Customize

Learn

Let’s browse the Ansible “playbook” file (site.yml) that deployed the Fabric network;
you do this from a terminal window in the mgbridge/hlf-ansible subdirectory.

Page 12

IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

__5. Open a terminal window from the Ubuntu task bar:

__ 6.Copy and paste the following commands in the terminal window:

cd ~/workspace/mgbridge/hlf-ansible
more site.yml

blockchain@ubuntu:~$ cd workspace/mgbridge/hlf-ansible
blockchain@ubuntu:~/workspace/mgbridge/h1f-ansible$| more site.yml
- name: Deploy MQ demo blockchain infrastructure and smart contracts
hosts: localhost
vars:
#
For information on these configuration options, read the documentation:
https://github.com/IBM-Blockchain/ansible-role-blockchain-platform-manager#example-playbook

(When using the “more” command, Press the spacebar for “Next Screen”.)

__"7.Although the Fabric network is built, the containers need to be started — execute the
start.sh bash script as follows (with leading “.” below) to start up the containers.

./start.sh

blockchain@ubuntu:~/ cspace/mgbridge/hlf-ansible$
blockchain@ubuntu:~/workspace/mgbridgefhlf-ansible$./start.sh
Starting the containers

ffb2f5f86a68

80bd81be7beb

cc456b64d5ac

41f3cb6a9bea

47e88a0127de

3cle7fe79584

3e5e3977ed9b

00bas5elbf8ab

b177396ec696

done....
blockchain@ubuntu:~/workspace/mgbridge/hlf-ansibles Jj

Page 13
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

__ 8. Next, verify that the 8 expected containers are running for the Vehicle Lifecycle Fabric
network, using the following docker command:

docker ps --format 'table {{.Names}}:\t {{.Ports}}'

blockchain@ubuntu:~/workspace/mqbridge/h1f-ansible$| docker ps --format 'table {{.Names}}:\t {{.Ports}}'
NAMES : PORTS

orderer.example.com: 0.0.0.0:17050->17050/tcp, 7050/tcp, 0.0.0.0:17055->17055/tcp
ca.orderer.example.com: 7054 /tcp, 0.0.0.0:16054->16054ftcp

peerd.regulator.example.com: 9.0.0.0:18051-18053->18051-18053/tcp

couchdb®.regulator.example.com: 4369 /tcp, 9100/ /tcp, 0.0.0.0:6984->5984/tcp
ca.regulator.example.com: 7054 /tcp, 0.0.0.0:18054->18054/tcp
peer®.dealer.example.com: 0.0.0.0:17051-17053->17051-17053 /tcp
couchdb®.dealer.example.com: 4369 /tcp, 9100/ /tcp, 0.0.0.0:5984->5984/tcp
ca.dealer.example.com: 7054 /tcp, 0.0.0.0:17054->17054/tcp

The output (example above) should confirm the network is running.

Now import this Fabric environment (i.e. the Fabric nodes/wallets/gateways) using the
import Fabric environment feature in the IBM Blockchain Platform VS Code extension.

__9.Back in the VS Code extension, click the ‘4’ sign in Fabric Environments to add a new
environment

v FABRIC ENVIRONMENTS

Local Fabric o (click to start)

Create new from template {uses Docke
Add an Ansible-created network
Add an IBM Blockchain Platform network (c

Add any other Fabric network (i

Page 14
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

__11. Browse to the directory “Home” > blockchain > workspace > mqbridge > hlf-ansible
and then highlight the vehicle folder and click Select on the bottom right. This folder is
where the artefacts for the Fabric environment (to match the running network) reside.

© Recent 4 | trblockchain workspace mqbridge » cz
i} Home Name - Size Modified
[Desktop @ contracts 6Feb
R f hlf-ansible-newest 11:03

< Downloads 2 deploy.sh 538 bytes 11:32

dd Music e z 7 “

A1 Pictures

vl Videos

[workspace

+ Other Locatio...

Cancel | Select |

__12. Specify the name Vehicle (upper-case ‘V’) for your two organization Vehicle Lifecycle
network and hit enter.

Vehicle

Enter a name For the environment |

In the output you should see it was successfully added
PROBLEMS OUTPUT ' Blockchain
3 AM] [INFO] Add envi
9 AM] [INFOD] Add
) AM] [INFO] Add e [
5> AM] [SUCCESS] Successfully added a new environment

y added a new environment

__13. Under Fabric Environments, click on Vehicle to verify you can successfully connect

to the new environment — confirmation of this is shown in the Output panel.
~ FABRIC ENVIRONMENTS

1 Org Local Fabric o (click to start)

Vehicle

__14. Next, under Fabric Gateways, click on the Vehicle - regulatorOrg_gw gateway and
when prompted, connect as the identity Ron from the list of identities offered.

admin

Page 15
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

__15. Expand the channel fabchannell.... then expand the contract twisty for

fabcar@1.0.1 - it will take a number of seconds (spinning icon) to reveal the list of
transactions (you are bringing up the Regulator organization’s chaincode container).
~ FABRIC GATEWAYS

Connected via gateway: Vehi

channell
... &5 fabcar@1.0.1

The two-organization network, including all identities, gateways and nodes under the
‘vehicle’ subdirectory in the h1f-ansible folder, is ready for use in VS Code. You will
now need to export Connection Profiles, for use later by the IBM MQ Bridge for
Blockchain component (one exported profile for each org).

__16. On the Fabric Gateways panel click Disconnect from the Regulator Gateway using
the disconnect icon

~ FABRIC GATEWAYS

fabcar@1.0.1

initLedger

__17. Hover over on the gateway Vehicle - dealerOrg_gw and right-click ... Export
Connection Profile
~ FABRIC GATEWAYS
Vehicle - dealerc

Vehicle - regulatorOrg_gw @

_18. Export the file with the name dealerOrg_gw_connection.json (remove the leading
‘Vehicle - * prefix, incl. the '-') and export it to the workspace/mqbridge folder:

Page 16
IBM MQ Bridge for Blockchain Lab

mailto:fabcar@1.0.1

IBM Blockchain

An IBM Proof of Technology

Name: I dealerOrg_gw_connection.json]

o
]
0O
dd
o]
-

Home
Desktop
Documents
Downloads
Music
Pictures

Videos
workspace

Other Locatio...

I< @blockchain workspace mgbridge }

Name

sl

=
Lo
sl

fabcar

hif-ansible

mqapp

MQServer
bridgeconfig_dealer.cfg
bridgeconfig_regulator.cfg
clearQs.sh
createLstnr_Dealer.mqsc
createLstnr_Regulator.mqsc
createQMagrs.sh
createQs.sh
createQueues.mqsc
mq_install.sh
runDealerBridge.sh

A | Size

971 bytes
980 bytes
541 bytes
165 bytes
165 bytes
664 bytes
524 bytes
2.4kB

520 bytes
211 bytes

Gz

Modified
9 Apr

9 Apr

9 Apr

28 Nov 2019
9 Apr

9 Apr

9 Apr

9 Apr

9 Apr

9 Apr

9 Apr

9 Apr

9 Apr

9 Apr

Cancel | Export |

__19. Using steps 17 — 18 as a guide, hover over the Vehicle - regulatorOrg_gw gateway
and right-click ... Export Connection Profile to the same folder as above — export it as

the filename regulatorOrg_gw_connection.json .

In the next section, you will focus on configuring IBM MQ for both the Dealer and
Regulator organizations.

Review

In this section you have:

e Examined an Ansible playbook (site.yml) that built the vehicle lifecycle

blockchain network used in this lab.

e Executed a single step to import the running Fabric environment, including
Nodes, Wallets and Gateways then connected to the environment.

e Exported connection profiles for both the Dealer and Regulator environments,
for inclusion in the IBM MQ Bridger for Blockchain configuration steps later.

Page 17

IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

2 Configure Dealer and Regulator MQ Environments

2.1 Introduction

This section executes the IBM MQ (“MQ”) configuration needed for this lab. MQ
application queues (defined in Queue Managers) and MQ channels are required for
both the client applications and the MQ Bridge instances — each will post or process
messages.

The steps to create these MQ artefacts are automated using bash scripts and ‘MQSC’
batch commands (more info in Appendix 4) — these are run for the Dealer and
Regulator MQ environments. Once done, the Node.JS applications can interact with
MQ, as well as the IBM MQ Bridge for Blockchain — you will configure this later.

An INPUT Queue (to receive application messages) and a REPLY queue (blockchain
results) are created for each organisation. You will review queues using MQ Explorer
(MQ Explorer comes with IBM MQ — it is a UI, that is very useful for administering MQ,
performing tasks/operations and checking the status of MQ objects).

Steps:

__20. Using the Ubuntu Explorer, enter the letters MQ to find the MQ Explorer application:

& Applications

@

1BM MQ Explorer
(Installation1)

B Files &Folders seefewer results ~

__21. Drag the MQ icon onto the task bar on the left - press Escape to leave the Ubuntu
Explorer

Page 18
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

__ 22, Return to the terminal window and change directory to HOME > blockchain >
workspace > mqgbridge subdirectory, run the following command to create the Queue
Managers and Channels for both the Dealer and the Regulator.

cd..
./createQMgrs.sh

blockchain@ubuntu: ~/workspace/mqbridge

blockchain@ubuntu:~/workspace/mgbridge$
blockchain@ubuntu:~ v mgbridges
blockchain@ubuntu:~/workspace/mgbridges |. fcreateQMgrs.sh

You should get confirmation that the sequence of steps was successful:

Creating the Regulator's MQ Queue Manager

IBM MQ queue manager created.

Directory '/var/mgm/qmgrs/Regulator_QM1' created.

The queue manager is associated with installation 'Installationi'.
Creating or replacing default objects for queue manager 'Regulator_QM1'.
Default objects statistics : 83 created. © replaced. ® failed.
Completing setup.

Setup completed.

Starting the Regulator's MQ Queue Manager

The system resource RLIMIT_NOFILE is set at an unusually low level for IBM MQ.

IBM MQ queue manager 'Regulator_QM1' starting.

The queue manager is associated with installation 'Installationi'.

5 log records accessed on queue manager 'Regulator_QM1' during the log replay phase.
Log replay for queue manager 'Regulator_QM1' complete.

Transaction manager state recovered for queue manager 'Regulator QM1'.

IBM MQ queue manager 'Regulator_QM1' started using v9.1.4.0.

....finished with Queue M .
blockchain@ubuntu:~/works nqbridges I

__23. From the same subdirectory /home/blockchain/workspace/mgbridge, run
the createQs. sh script to create the Application Queues:

./createQs.sh

blockchain@ubuntu:~/workspace/mgbridge$./createQs.sh
creating APPL1 (Dealer) INPUT and REPLY queues

5724-H72 (C) Copyright IBM Corp. 1994, 2019.
Starting MQSC for queue manager Dealer_QM1.

See output next page

Page 19
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

From the output, you should see messages that two Queues were created (as well as

certain security settings being disabled for this lab).
AMQ80O6I: IBM MQ queue created.

5 : DEFINE QLOCAL(APPL1.BLOCKCHAIN.INPUT.QUEUE) +
: LIKE(SYSTEM.BLOCKCHAIN.INPUT.QUEUE) +
DESCR('Sample Blockchain application input queue')
AMQ80OO6I: IBM MQ queue created.
| 6 : DEFINE QLOCAL(APPL1.BLOCKCHAIN.REPLY.QUEUE) +
3 DESCR('Ssample Blockchain application reply queue') +
DEFPSIST(YES) +
DEFSOPT(SHARED) +
SHARE +
REPI ACF

AMQ8006I: IBM MQ queue created.

6 MQSC commands read.

No commands have a syntax error.

A1l valid MOSC commands were processed.
.5724-H72 (C) Copyright IBM Corp. 1994, 2019.
Starting MQSC for queue manager Regulator QM1.

1 : DEFINE LISTENER(TCP.LISTENER) TRPTYPE(tcp) CONTROL(gmgr) PORT(1415)
AMQ8626I: IBM MQ listener created.

2 : START LISTENER(TCP.LISTENER)
AMQ8021I: Request to start IBM MQ listener accepted.

3 : DEFINE CHANNEL('APPL.CLIENT.SVRCONN') CHLTYPE(SVRCONN) TRPTYPE(TCP)
AMQ8014I: IBM MQ channel created.
3 MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed
'bLockchain@ubuntu:~/workspace/mgbridge%

__ 24, Start MQ Explorer by clicking on the icon you dragged to the left task bar, and verify
that you can see two queues (INPUT and REPLY) for each of Dealer_QM1 and
Regulator_QM1 queue managers by navigating to the Queue Managers....Queues
folder.

<>
\\L/

Example of the INPUT and REPLY queues for the Dealer Queue Manager:

@ ® & 1BM MQ Explorer (Installation1)

&5 MQ Explorer - Navigator 2 = 8 | @ mMQExplorer-Content £ o =5
<8 = ¥ | Queues
v P IBMMQ
v & Queue Managers Filter: Standard for Queues i
¥ Kl Dealer QM1 4 Queue name

= =l APPL1.BLOCKCHAIN.INPUT.QUEUE
(= Topics =l APPL1.BLOCKCHAIN.REPLY.QUEUE
= Subscriptions

Page 20
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

And an example of the INPUT and REPLY queues for the Regulator Queue Manager

8 = Y | Queues

. QIBM MQ Filter: Standard For Queues 1
¥ (= Queue Managers
v Bl Regulator_QM1 7 Queuename Queue type Open input count Open output counk
| =Queues | &) APPL1.BLOCKCHAIN.INPUT.QUEUE | Local 0 0
&= Topics il APPL1.BLOCKCHAIN.REPLY.QUEUE | Local 0 0

(= Subscriptions

OK. You have now completed the MQ Configuration setup steps in the lab.

Review
In this part of the Lab you have:

e Created application Queue Managers for Dealer and Regulator in IBM MQ.
e Created application input and reply queues in each Queue Manager and applied
channel and security settings on the Queue Manager via MQ command files.

Page 21
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

3 Configure Dealer/Regulator MQ Bridge for Blockchain

3.1 Introduction

In this section, you configure the IBM MQ Bridge for Blockchain — an instance of the
bridge runs for each of the organisations. Once configured, they will be launched and
the bridge monitors designated Queues; INPUT application queues for blockchain
transactions, and REPLY queues for the bridge to post responses / blockchain results -
the application consumes the results. Applications do not need to know anything
about the blockchain network setup — IBM MQ Bridge handles this. The applications
are aware of IBM MQ only.

When you configure the MQ Bridge for Blockchain component for the first time, using a
CLI based configuration program called runmgqbcb - it simply asks a series of
qguestions and creates a configuration file based on your answers. More information in
the IBM MQ Bridge for Blockchain configuration can be found here
https://www.ibm.com/support/knowledgecenter/SSFKSJ 9.1.0/com.ibm.mg.con.doc/
g130890 .htm and in Appendix 2 of this guide.

You will go through the steps to create the Bridge; it will need to know information
about the blockchain network it is connecting with, the identity it will use, and MQ
configuration details (like queue manager, queue names).

Steps:

__25. In aterminal window ensure you are in the directory
/home/blockchain/workspace/mqbridge/

cd /home/blockchain/workspace/mgbridge/

blockchain@ubuntu: $lcd fhome/blockchain/workspace/mgbridge

blockchain@ubuntu: S

__ 26. Set the MQ environment variable (note the leading ‘.” below sets in the current shell)
/opt/mgm/bin/setmgenv -s -k

There is no output from this command — it simply sets some environment variables.

Page 22
IBM MQ Bridge for Blockchain Lab

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q130890_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q130890_.htm

IBM Blockchain

An IBM Proof of Technology

_27. Launch the IBM MQ Bridge for Blockchain configuration tool as follows:

runmgbcb -o student bridgeconfig dealer.cfg

blockchain@ubuntu:

$|runmgbcb -o student_bridgeconfig dealer.cfg

2020-03-27 11:10:04.145 UTC IBM MQ Bridge to Blockchain

5724-H72 (C) Copyright IBM Corp.

Level : p914-1L191127.DE

2017, 2019

Enter new values for the configuration attributes.
Current values are shown in square brackets.

You are asked to provide answers to questions interactively — use the answers in BOLD
in column 2 below. In some cases, hit enter to accept the [default], or leave it blank:
(For some of the longer Answers, you might like to cut and paste the values from the
table.)

Parameter

Answer

Queue Manager

Dealer_QM1

Input Queue

APPL1.BLOCKCHAIN.INPUT.QUEUE

MQ Channel APPL.CLIENT.SVRCONN
MQ Conname 127.0.1.1(1414)
MQ CCDT URL <leave blank>

JINDI implementation class

Hit enter (accept the default [com.sun.jndi.fscontext.RefFSContextFactory])

JINDI provider URL

Hit enter <leave blank>

MQ UserId

Hit enter <leave blank>

MQ Password

Hit enter <leave blank>

------ Fabric Configuration ------

Network Configuration file

/home/blockchain/workspace/mqbridge/dealerOrg_gw_connection.json

/home/blockchain/workspace/mqbridge/hlf-

Wallet ansible/vehicle/wallets/dealerOrg
User Name Dino

Certificate Hit enter <leave blank>

Private Key Hit enter <leave blank>

Organisation

dealerOrgMsP

Commit Timeout Hit enter (accept default of [15])

Network Discovery Hit enter (accept default of [N])

Updates wait for all Peers? Hit enter (accept default of [Y])

Updates sent to all organisations? Hit enter (accept default of [N])
-------------- Certificate Stores for MQ TLS connections ------ (no TLS used)

Personal keystore

Hit enter <leave blank>

Keystore Password

Hit enter <leave blank>

Trusted store for signer certs

Hit enter <leave blank>

Trusted store password

Hit enter <leave blank>

------ Behaviour of bridge program ------

Runtime logfile for stdout/stderr

/home/blockchain/workspace/mqgbridge/dealer-bridge.log

Page 23
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

Number of logfiles Hit enter (accept default of [3])

Maximum size of each logfile Hit enter (accept default of [2097152])
The completed output of your configuration will look something like the following:

Enter new values for the configuration attributes.
Current values are shown in square brackets.

to clear values; us

If 11 of values ar ired these parated by commas
or en ed on multiple 11 . A blank line terminates the list.

MOTE: You cannot edit existing values - you can only keep, replace or clear them.

Manager r ; -]
dge Input Queue : M.BLOCKCHAIN.INPUT.QUEUE]APPL1.BLOCKCHAIN.INPUT.QUEUE
) : APPL.CLIENT.SVRCONN
Conname £ 127.0.1.1(1414)
MQ CCDT URL :
INDI imp entation class £ om.sun.jndi.fscontext.RefFSContextFactory]

MQ Useric
MQ Password

ealerOrg_c e]
hlf-ansible icle/ ets/dealerOrg

igner certs
password

e program

copy of stdout/

Runtim

Number of logfi :

Maximum size of ch logfile (bytes) : [2097152]
-03-27 11:55:09.374 UTC [.

If any of the values are incorrect, simply delete student_bridgeconfig_dealer.cfg and
rerun the runmgbcb command.

Page 24
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

__28. From the /home/blockchain/workspace/mqbridge/ directory run the following
command in the terminal to peruse the created Dealer MQ bridge configuration file:

code student bridgeconfig dealer.cfg

dent_bridgeconfig_dealer.cfg <

g_dea

Line 4: the Network Path to the gateway connection profile to be used by a running MQ
Bridge for Blockchain, exported via the IBM Blockchain Platform VS Code extension to
the subdirectory “HOME” /workspace/mqbridge/. There are two files, one for each
organisation.

Line: 8-9: the identity to use for sending requests and the organisation MSP of the
identity

Line 11-12: Wallet location for identities being used and the MQ queue name that
applications can post to, so that the Bridge component can process using a proscribed
format, then submit the request via the SDK to that organisations peer.

Line 18-19: Details about the MQ channel the client application can connect to, so it
can post messages to a designated queue —and the TCP and listener port address for
the Queue Manager.

Line 22: provide details of the Queue Manager name that the application queue
resides in, with which to connect to from the IBM MQ Bridge for Blockchain
component.

Similarly, a configuration file called bridgeconfig_regulator.cfg, (created as
preparation for this lab) configures the Regulator bridge component.

Page 25
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

Each running IBM MQ Bridge instance connects through separate Fabric gateway
connection files; these were earlier exported using the IBM Blockchain Platform for VS
Code extension. This file path is reflected in the variable BCNetworkPath above.

__29. Close the VS Code session when you’re finished browsing the file by clicking on the
‘x’ for the configuration file

Terminal Help student_bridgeconfig_dealer.cfg

student_bridgeconfig_dealer.cfg x

__30. The IBM MQ Bridge components for Dealer and Regulator, use bash scripts to launch
their components in the background. The bash scripts (one for Dealer bridge, one for
Regulator bridge) look for filenames bridgeconfig_dealer.cfg and
bridgeconfig_regulator.cfg upon launch and use ‘known configurations’. You can
compare your Dealer bridge file (File: student_bridgeconfig_dealer.cfg) against the
master file (bridgeconfig_dealer.cfg) using the Linux diff command, to check if your
configuration steps completed correctly.

From the terminal window, still in the /fhome/blockchain/workspace/mqbridge
subdirectory, paste in the following command:

diff student bridgeconfig dealer.cfg bridgeconfig dealer.cfg

blockchain@ubuntu: ~/workspace/mqbridge

untu: $ |diff student bridgeconfig dealer.cfg bridgeconfig dealer.cfg
- $

If there is no output from the command, then you have provided all the right answers,
well done —if there is actual output from the command, then a wrong value may have
been provided in the question and answer configuration steps (but you can still
continue anyway).

This concludes this part of the lab. With the MQ and MQ Bridge Components now
configured for the Dealer and the Regulator, you will turn your attention to:
e Testing out car transactions using the dealer and regulator applications;
e Showing the messages deposited on the MQ queues (ie with no bridge running
yet) in MQ Explorer
e Starting the Dealer bridge you configured and see it connect to the Queue
Manager, then forward the stored request to the blockchain, then you will
check the blockchain response in MQ Explorer.
e Test the complete end-to-end application to blockchain integration; creating
the car (Dealer) and displaying status results —then performing queries from
the application and seeing results from the ledger (as Regulator).

Page 26
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

Review
In this part of the Lab you have:

e Performed the steps to configure the Dealer’s IBM MQ Bridge for Blockchain
e Explored and reviewed the key settings for configuring the Bridge, both for the
Dealer and the Regulator bridge configurations.

4 Review and execute the Dealer Car Application

4.1 Introduction

In this section will look at how the bridge connects to IBM MQ and the blockchain and
review stored MQ messages when the bridge is not yet running. You will review the
Node.JS based dealer application, understand (at a high level) how it sends/receives
messages. Finally, you will carry out end-to-end transactions using the Dealer
application, creating cars on the blockchain, getting results back to display in the
application. The same applies to blockchain queries via the Regulator application. This
final section will see both bridge components running, and processing MQ messages.

The files being used for the Dealer application consist of:

dealer.js — This is the main application file. It launches as a CLI application, with a
menu to create cars with specific car IDs. Upon selection of an ID, a message
containing a JSON request is sent to MQ and deposited on an INPUT queue. This is
processed by MQ Bridge, and a transaction request sent to the blockchain network
using a blockchain identity. The bridge puts the response from the blockchain into an
MQ REPLY queue. The application tracks the reply to the original create car request,
and the result is displayed in the dealer application.

inquirechoices.js — this file is the interactive component of the Dealer application that
requests inputs — invoked by dealer.js, it enables a user to select a car from a list -
and uses the npm module inquirer

clientcfg.json is a metadata configuration file, which contains a list of JSON
transaction request structures, such as Queue Manager names, and transaction
selectors that the dealer App uses, when it asks the user to select a car identifier. After
acar is selected in the dealer App, it sends a transaction to the blockchain via MQ
Bridge. The clientcfg.json file contains entries that consist of ‘create’ request
operations (and some car query/history requests, for the Regulator app later).

Page 27
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

runDealerApp.sh sets up the Queue Manager (QM) connection info. Uses the
MQSERVER variable to locate the dealer QM and the communication method to be
used to connect. Once set, the bash script calls the dealer.js Node.js file so the MQ
Client APIs can connect to the queue manager.

Steps:

First, initialise the ledger with some sample car data as identity Dino. You do this by
executing the Fabcar initLedger smart contract transaction. After, you will run the
Dealer Application and see the end-to-end MQ to blockchain integration in action.

__31. Back in the IBM Blockchain Platform VS Code extension, connect to the Dealer
gateway dealerOrg_gw as Dino

" FABRIC GATEWAYS

Vehicle - dealerOrg_gw @

Vehicle - regulatorOrg_gw @

Dino
admin

dealerAdmin

__32. Expand fabchannell followed by the Fabcar smart contract and select the

initLedger transaction then right-click and Submit Transaction
~ FABRIC GATEWAYS

Connected via gateway: dealerOr...

changeCarOwner

When prompted, press enter three times to accept the defaults: thatis, no
parameters, no transient data, and accept the default peer-targeting policy respectively
—on the bottom right, a message indicates that the transaction was submitted.

bmitted transaction

Page 28
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

Next, you will start the Car Dealer application. Note that you won’t yet start the IBM
MQ Bridge component for the Dealer organisation; this is so that you can first examine
the MQ input request message (by the Dealer app) from inside MQ Explorer, before
going on to then start the Bridge. Once up and running, it will process any queued
request messages, and handle the interaction with the Dealer’s blockchain network.

__ 33. Return to the main terminal window and start up the Dealer client application (in its
own window) from /home/blockchain/workspace/mgbridge/mgapp

cd mgapp
gnome-terminal --tab -e ./runDealerApp.sh --geometry=160x40

app$ gnome-terminal --tab -e ./runDealerApp.sh -geometry=160x40

__34. Select the first carid MQCAR11 from the list and press enter. (Each menu entry
describes some attribute values that the car will be created with)

‘MQCAR1Z, '"Hyundai', 'i136', 'Green', 'Hilary Youse'
'"MQCAR13', 'Volkswagen', 'Golf', 'Blue', 'Steve Odore'
'"MQCAR14', 'Skoda', 'Superb', 'Orange', 'Olive Oyle'

The create car action is confirmed on screen as shown below and submitted as a
request to the application queue. The application window will close itself, as part of the
lab, please note — you will get no response (as the message has only gone to MQ so far)

)l Terminal

PLEASE NOTE: this application window will close automatically in a few seconds..

At this point, the queued application message should be visible in MQ Explorer.

Page 29
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

__35. Switch back to MQ Explorer. Select queue manager ‘Dealer_QM1’ followed by the
input queue APPL1.BLOCKCHAIN.INPUT.QUEUE and right click....Browse Messages

then scroll to the right to see the column Message Data, it contains the smart contract
JSON request.

%= MQ Explorer - Navigator &2 = B | @ mQExplorer-Content 52 # W o ¥ = B
& B v Queues
¥ & 1BM MQ
¥ & Queue Managers Filter: Standard for Queues =
¥ Bl Dealer_QM1 # Queuename Queue type Open input count Open output count C
& Queues l=} APPL1.BLOCKCHAIN.INPUT.QUEUE | Local 0) 1
& Topics |= APPL1.BLOCKCHAIN.REPLY.QUEUE Local 0 0

(= Subscriptions
* (= Channels

= Listeners @ () Message browser

(= Services

= Process Definitions Queue Manager Name: Dealer QM1

& Namelists Queue Name: APPL1.BLOCKCHAIN.INPUT.QUEUE

(= Authentication Information
= Communication Information]
» Kl Regulator_ QM1 i 137 {"operation™:"SUBMIT","network":"fabchannel1”,"contract™:"fabcar”, "args":["createCar"|
= Queue Manager Clusters I

Data length |Message data

Click close to close the Message browser.

__36. Back in the terminal window, launch the Dealer Bridge component in the background
— copy/paste this command (the bash script is one directory level up):

gnome-terminal --tab -e ../runDealerBridge.sh --geometry=100x10

gnome-terminal --tab -e ..frunDealerBridge.sh --geometry=100x10

P

Terminal

Starting the Dealer Bridge...

2020-02-03 16:24:52.604 UTC IBM MQ Bridge to Blockchain
5724-H72 (C) Copyright IBM Corp. 2017, 2019

Level : p914-L191127.DE

2020-02-03 16:24:54.752 UTC Ready to process input messages.

The Dealer bridge is now running in a background window, bottom left, and ready to
process queue messages for the Dealer’s network. The queued message from earlier is
automatically processed - and as a result, should create a new car record with
MQCAR11 on the blockchain. To check the car was created, return to the IBM
Blockchain Platform VS Code extension in VS Code.

Page 30
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

__37. In the Fabric Gateways view, right click on the transaction queryCar and right-click
... Evaluate Transaction
~ FABRIC GATEWAYS

Connected via gateway: dealerOr...

ng ID: Dino

__ 38. Ensure the parameters you enter are as follows (in [] square brackets):

["MQCARI1"]

Press enter twice, to accept the defaults for the transient data and peer targeting
prompts. Review the output in the Output pane — you should see the query result
shows that the car was created successfully, from the MQ request message.

OUTPUT J IS0 TERMII Blockchain

20 4:24:23 PM] [INFO] evaluating transaction queryCar with args MQCAR11 on channel
abchannell

SS] Returned from queryCar: {"c r:"Black",
",“n‘c:d:el . |

Note that we will also have a blockchain response now — because the transaction was
submitted successfully. The Dealer Bridge has placed this response on the REPLY
queue (i.e. in APPL1.BLOCKCHAIN.REPLY.QUEUE), for the Dealer App to consume.
Let’s look at the response in MQ Explorer.

__39. In MQ Explorer, return to the Queue list in the Queue Manager ‘Dealer_QM1’, select
the APPL1.BLOCKCHAIN.REPLY.QUEUE queue and right click...Browse Messages —

Page 31
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

__40. Scroll to the right to see the message data — and it shows the response that was
returned from the fabcar smart contract, ready for processing by an application. It

shows a completion response of ‘OK’.
¥ (B IBM MQ

* & Queue Managers Filter: Standard for Queues =
I" Bl Dealer_QM1 I / Queuename Queue type Open input count Open output count C|
= Queues l=l APPL1.BLOCKCHAIN.INPUT.QUEUE Local 1 0 0
& Topics Il APPL1.BLOCKCHAIN.REPLY.QUEUE || Local lo lo [
(> Subscriptions
» = channels
(& Listeners
(= Services

Message browser

(= Process Definitions
& Namelists Queue Manager Name: Dealer_QM1

& Authentication Informatii - g, eye Name: APPL1.BLOCKCHAIN.REPLY.QUEUE
(= Communication Informakt
» Bl Regulator QM1 th Datalength Message data
(= Queue Manager Clusters .
- . "completionCode": 0,
(= JMS Administered Objects "completionCodeString"™ "OK",
(= Managed File Transfer “gatasyres 7,
(& Service Definition Repositori data":

® Refresh Close

Click on Close to close the message browser window.

At this point - you’ve seen how the messages appear in MQ Explorer. Next, you will do
an end-to-end transaction within the application by creating another new car record. As
an application could have many messages on the same reply queue, the application
needs to process transaction responses against the original car creation request.

__41. Switch back to the terminal, and from the mgqapp subdirectory, enter the following
command to clear the REPLY queue. We want to discard this response for now — the
following bash script executes MQ queue operations to clear queues. Note the leading
two ‘.." is important here.

../clearQs.sh

AMQ80221: IBM MQ queue cleared.
2 : CLEAR QLOCAL (APPL1.BLOCKCHAIN.REPLY.QUEUE)
AMQ80221: IBM M(Q queue cleared.

2 MQSC commands read.

No commands have a syntax error.

ALl valid MQSC commands were processed.
blockchain@ubuntu:

Page 32
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

__42. From the main terminal, launch the Car Dealer application from the mgapp directory
using the following command sequence:

gnome-terminal --tab -e ./runDealerApp.sh --geometry=160x40

blockchain@ubuntu: 0 p$ gnome-terminal --tab -e ./runDealerApp.sh --geometry=160x40

blockchain@ubuntu:

This time select car MQCAR12 from the list and press enter — again, it describes some
attribute values that this car will be created with.
= Terminal

Choose a Car action....

----CREATE Ci
'MQ(&Q11" 'Hnnda" 'Arrnrd" 'R]ark" 'Tam_NShanter'

'"MQCAR13', 'Volkswagen', 'Golf', 'Blue', 'Steve Odore'
'"MQCAR14', 'Skoda', 'Superb', 'Orange', 'Olive Oyle’

----C GE OWNER

'"MQCAR11C', 'Honda', 'Accord', 'Black','s=>Illy Rodrigo<<'
'"MQCAR12C', 'Hyundai', 'i38', 'Green','==Bart Socrates
'"MQCAR13C', 'Volkswagen', 'Golf', 'Blue','==Dan Sorrent
'"MQCAR14C', 'Skoda', 'Superb', 'Orange','s>Vince Alain<<

PLEASE NOTE: this application window will close automatically in a few seconds..

completionCodeString™: "OK". Car addfupdate successful

Page 33
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

__43. Next, return to the IBM Blockchain Platform VS Code extension icon — you want to
verify the creation of car MQCAR12 using the smart contract query. Execute the
transaction queryCar as the Dealer Org by performing right-click...Evaluate in the
smart contract view, providing a parameter exactly as shown below:

["MQCAR12"]

he transaction, (e.g. ["arg1”, "a 5 'Enter’ to

Blockchain

3 PM] [INFO] evaluating transaction queryCar with args MQCAR11l on channel

PM] [SUCCESS] Returned v
nake" :"Honda", "m
4 PM] [INFO] evaluate ns
PM] [INFO] evaluating tr

:46 PM] [S 5 ":"Green",
", "make" : "Hyunda

You have now successfully demonstrated end-to-end integration, all the way back to
the application itself. You have also verified the creation of car assets; the first
processed after the Bridge component was started; the second, as an end-to-end
transaction. You then performed a direct query on the ledger to verify this.

This concludes this section of the lab.
Review
In this part of the Lab you have:
e Successfully examined MQ messages and requests (as well as responses)
processing by the Dealer organisation’s IBM MQ Bridge for Blockchain.

e Successfully carried out end-to-end transactions as the Dealer user Dino and
seen the end-to-end integration at play.

Page 34
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

5 Review and execute the Regulator Reporting
Application

5.1 Introduction

In this section, you will now look at the Regulator perspective and its application
environment. The regulator’s role on the network is to perform compliance checks, eg
cross-verify car ownership records on the shared ledger. Like the Dealer, the Regulator
application clients use MQ APIs to talk to IBM MQ. Before you use the Regulator App,
you first need to start the Regulator organisation’s IBM MQ Bridge for blockchain.

The Regulator Bridge configuration contains different parameters to that of the Dealer
bridge configuration details.

Steps:
__44. From the terminal window in subdirectory
/home/blockchain/workspace/mgbridge/mgapp, open the Regulator bridge
configuration file in VS Code:

code ../bridgeconfig regulator.cfg

blockchain@ubuntu:~/workspace/mg/mgappS code ../bridgeconfig regulator.cfg

Page 35
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

In the file, there are a few settings that you can point out straight away:

bridgeconfig_regulator.cfg =

Line 4: The location of the Regulator’s Fabric gateway connection profile; this is
required for the MQ Bridge to know of the Regulator’s member blockchain network
nodes

Line 9: The organisational MSP for the regulator

Line 11-12: The wallet location (containing identities) and the INPUT queue that the
bridge will examine for application requests in the Regulator’s application queue
manager.

Line 18-19: The Channel connection details for the application clients to make a
connection to this queue manager — this is on a different port (1415) to that previous
shown for the Dealer, not least because you are running on the same machine @
Line 22: Regulator’s Queue Manager name, that you created earlier in the lab.

__45. Close the configuration file and return to the main terminal window, and still in the
mgqapp subdirectory, launch the regulator IBM MQ Bridge component in the
background as follows:

gnome-terminal --tab -e ../runRegBridge.sh --geometry=100x10

blockchai.n@ljbuntu:~,-"|.-.'u:1rIr::5pv.'j-:'r'_-.,-"n".qbridge,-"n‘-.qapps gnome-terminal --tab -e ..,I’runRegBridge.sh --geometry=186x18

Page 36
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

You will see a persistent window (usually top right) indicating the bridge is ready.

Terminal

Starting the Regulator Bridge...

2020-82-03 17:10:21.526 UTC IBM MQ Bridge to Blockchain
5724-H72 (C) Copyright IBM Corp. 20817, 2019

Level : p914-L191127.DE

2020-02-03 17:10:23.594 UTC Ready to process input messages.

(Tip: If the window closes in a few seconds, it’s likely that you didn’t export the
Regulator’s gateway connection profile in the VS Code extension, per step 16 earlier)

__46. Back in the main terminal, launch the Regulator App (in a new window) as follows:

gnome-terminal --tab -e ./runRegApp.sh --geometry=160x40

blockchain@ubuntu:~/workspace/mgbridge /mqapp$ gnome-terminal --tab -e ./runRegApp.sh --geometry=160x40

__47. In the Regulator App, choose to query the current ownership record of the first car,
MQCAR11 (Q for Query) and press enter

REGULATOR COMPLIA

"MQCAR12Q'

'MQCAR13Q'
'MQCAR14Q'

----QUERY HIS
'MQCAR11H'
'MQCAR12H'
' MQCAR13H'
'MQCAR14H'

Page 37
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

The output confirms the details of the car and ownership — take note of who owns the
car at this present time (bottom right). (Note that the application window closes itself
after approx. 5-6 seconds — you can re-run the query app at any time).

Terminal
Starting the Regulator App...

Choose a Car query action....

lQuerying car record / o rship details....

Just like the Dealer application earlier, query requests for the blockchain get posted to
a designated Regulator INPUT queue in IBM MQ. Again, these are processed by the IBM
MQ Bridge for Blockchain. After submitting the smart contract query transaction, the
bridge returns the results for the car ID queried, and displays the information in the
Regulator App.

That concludes this section of the lab.
Review
In this part of the Lab you have:
e Successfully examined the configuration of the Regulator organisation’s IBM
MQ Bridge for Blockchain.

e Successfully carried out end-to-end transactions as the Regulator user Ron and
seen the end-to-end integration at play.

Page 38
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

6 Change Car Ownership as Dealer, verify as Regulator

6.1 Introduction

This section shows a typical lifecycle change in the vehicle lifecycle network —i.e. car
ownership changes. The Dealer App is also used to update the ownership records. The
smart contract transaction that performs this in Fabcar is called changeCarOwner .
Later, the Regulator will query the car’s details on the blockchain, to see the change of
ownership on the ledger.

Steps:
__48. From the main terminal window, launch the Dealer App this time:

gnome-terminal --tab -e ./runDealerApp.sh --geometry=160x40

S gnome-terminal --tab -e ./runDealerApp.sh --geometry=160x48

blockchain@ubuntu

__49. Under the CHANGE OWNER menu (the 2nd menu), select the first car MQCAR11C
(for “change”) - press enter; the >><< chevrons, means the new owner is ‘Illy Rodrigo’

ALERSHIP APP

Choose a Car action....

- -CREATE CARS -----

"MQCAR11', 'Honda', 'Accord', 'Black', 'Tom OShanter'
"MQCAR12, 'Hyundai', 'i3@', 'Green', 'Hilary Youse'
"MQCAR13', 'Volkswagen', 'Golf', 'Blue', 'Steve Odore'’
'"MQCAR14', 'Skoda', 'Superb', 'Orange', 'Olive Oyle'

E_OWNER = I omoe

"MQCARIZC™, "Hyundal', '138°, 'Green’, >>Bart Socrates<<'
"MQCAR13C', 'Volkswagen', 'Golf', 'Blue','==Dan Sorrento<<'
"MQCAR14C', 'Skoda', 'Superb', 'Orange','==Vince Alain<<'

The Dealer App should confirm that the update to the ledger was successful

Terminal

PLEASE NOTE: this application window will close automatically in a few seconds..

completionCodeString™: "OK". Car add/update su

Page 39
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

The message window will close automatically after approx. 5 seconds.
Now let’s check the car record as identity Ron, using the Regulator App

__50. From the existing command line, launch the Regulator App as follows:

gnome-terminal --tab -e ./runRegApp.sh --geometry=160x40

blockchain@ubuntu: nS gnome-terminal --tab -e ./runRegApp.sh --geometry=160x40

__51. In the Regulator App, once again, choose to query the record of the first car,

MQCAR11 and press enter
Starting the Regulator App...

REGULATOR COMPLIANCE APP

Choose a Car query action....

----QUERY CAR DETAILS/CURRENT OWNERSHIP -----

"MQCAR12Q'
'MQCAR13Q'
'MQCAR14Q"

- ---QUERY HISTORY OF PREVIOUS OWNERS -----
"MQCAR11H'
"MQCAR12H'
"MQCAR13H'
"MQCAR14H'

The output confirms the details of the car and ownership — it is now owned by its new
owner, ‘Illy Rodrigo’. Again, the application will close itself in approx. 5 seconds.

Terminal
Starting the Regulator App...

Querying car record / ownership details....

PLEASE NOTE: this application window will close automatically in a few seconds..

Page 40

IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

__52. Let’s verify this from the IBM Blockchain Platform VS Code extension, by executing a
query on car ‘MQCAR11’ and verify the same change ownership transaction performed
by the application matches what you would expect. Return to the VS Code extension.

__53. In the Fabric Gateways view, still connected as the Dealer gateway, right-click on
the transaction queryCar and click ... Evaluate Transaction
~ FABRIC GATEWAYS

onnected via gateway: dealerOr...

ID: Dino

Evaluate Tra

__54. Ensure the parameters you enter are as follows (in [] square brackets):
["MQCAR11"]

Press enter twice to accept the defaults for the transient data and peer targeting
prompts. Review the output in the Output pane — you should see the query result from
the ledger shows that the car ownership is what you saw in the application earlier.

Blockchain

You’ve now verified the end-to-end changes made by the application to the system of
record (the ledger); once from the application and once using the smart contract
transaction via the VS Code extension.

This concludes this section of the lab.

Page 41
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

Review
In this part of the Lab you have:

e Successfully performed end-to-end transactions as the Dealer user Dino and
seen the end-to-end integration at play to show the current car ownership as
supplied by the blockchain system of record.

7 Audit History of Previous Ownership as Regulator

7.1 Introduction

In the last section of this lab, you carry out another typical application function:
querying the history of previous owners for a vehicle. The Regulator uses their
application to check on the history of previous owners of a selected car.

In the steps below, you will use the Dealer App again, to update the ownership record
of car MQCAR11, return ownership back to owner “Tom O Shanter”, then perform
another ownership change to “Illy Rodrigo” — this conveniently provides a trail of 3
previous owners (Tom, Illy, and Tom again) and the current owner — Illy Rodrigo. The
Regulator can then query the car on the blockchain, to see the history of previous
owners.

Steps:

__55. From the main terminal window, still in the mgapp subdirectory, launch the Dealer
App:

gnome-terminal --tab -e ./runDealerApp.sh --geometry=160x40

blockchain@ubuntu:«/workspace/mqbridée/mqapps gnome-terminal --tab -e ./runDealerApp.sh -geometry=160x40

blockchain@ubuntu:~/workspace/mqbridge /mqapp$

Page 42
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

Select the car MQCAR11 and hit enter (Note: this is simply running the “create”
transaction again, but it has the effect of updating the existing car record for MQCAR11
—in the process, it will update the current owner back to Tom OShanter - and thus
makmg Illy Rodrigo a previous owner on the ledger record for this car):

Terminal

'MQCARlz, "Hyundai', "130', 'Green', 'Hilary Youse'
'"MQCAR13', 'Volkswagen', 'Golf', 'Blue', 'Steve Odore'
MOCAR14 'Skoda', 'Superb', 'Orange', 'Olive Oyle'

~ Sl GE OWNER : ---

'"MQCAR11C', 'Honda' 'Accord', 'Black','s>>Illy Rodrigo<<'
'"MQCAR12C', Hyundal 'i30', 'Green','s>Bart Socrates<<'
"MQCAR13C', 'Volkswagen', "Golf', Blue' , '>=Dan Sorrento<
'MQCAR14C', 'Skoda', 'sSuperb', 'Orange', }}VIHCE Alain<<

Car MQCAR11 gets updated on the ledger, and Illy Rodrigo becomes a previous owner
in the car’s history. Again, note that the application window closes itself.

PLEASE NOTE: this application window will close automatically in a few seconds..

_56. Launch the Dealer app again:

gnome-terminal ——tab -e ./runDealerApp.sh --geometry=160x40

blockchatnmubuntu /mqb 'rz ppﬁ gnome-terminal --tab -e ./runDealerApp.sh -geometry=160x40

blockchain@ubuntu:

Page 43
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

__57. Select car MQCAR11C under the Change Owner sub-menu and hit enter — this time,
the current owner becomes Illy Rodrigo once again, adding another ownership change
(and Tom OShanter effectively becomes a ‘previous owner’).

Choose a Car action....

---CREATE CARS

'"MQCAR11', 'Ho

"MQCAR12, 'Hyundai', 'i3@', 'Green', 'Hilary Youse'
"MQCAR13', 'Volkswagen', 'Golf', 'Blue', 'Steve Odore'
"MQCAR14', 'Skoda', 'Superb', 'Orange', 'Olive Oyle'

"MQCAR12C', 'Hyundai', 'i13@', 'Green', '»=Bart Socrates<<'
"MQCAR13C', 'Volkswagen', 'Golf', 'Blue','s>Dan Sorrento<<
"MQCAR14C', 'Skoda', 'Superb', 'Orange’','s>Vince Alain<<'

PLEASE NOTE: this application window will close automatically in a few seconds..

Next, you can check out the ownership history of car MQCAR11 - as the Regulator. It
should reveal the history of previous owners, as a result of the transactions earlier.

__58. Launch the Regulator App from the terminal window as follows:

gnome-terminal --tab -e ./runRegApp.sh --geometry=160x40

blockchain@ubuntu:~/workspace/mgbridge /mgapp$ gnome-terminal --tab -e ./runRegApp.sh --geometry=160x40

Page 44
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

__59. Inside the Regulator App, choose to query the current ownership record of the first
car, MQCAR11 (Q for Query) and press enter — it will reveal Illy Rodrigo as the current
owner.

PLEASE NOTE: this application window will close automatically in a few seconds..

_ 60. Finally, launch the Regulator App once again, to query the history of previous owners

gnome-terminal --tab -e ./runRegApp.sh --geometry=160x40

blockchain@ubuntu:~/workspace/mgbridge /mgapp$ gnome-terminal --tab -e ./runRegApp.sh --geometry=160x40

__61. Under ‘QUERY HISTORY OF PREVIOUS OWNERS’ submenu — select ‘MQCAR11H’ (H
for history) and hit enter:

® S & Terminal

Starting the Regulator App...

' MQCAR11Q

'MQCAR12Q'
'MQCAR13(Q'
'MQCAR14Q'

"MQCAR12H'
"MQCAR13H'
"MQCAR14H'

Page 45
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

Once again, the query request gets processed, the application consumes the response
provided by the bridge. You will get a history of previous owners displayed inside the
application — there should be three previous owners on the right (see below). Note
again, the window will close itself after 5 seconds

Terminal
Starting the Regulator App...

Querying car record / ownership details....

PLEASE NOTE: this application window will close automatically in a few seconds..

__ 62, Return to the IBM Blockchain VS Code extension, and under the Fabric Gateways
view, disconnect from the Dealer’s gateway, then click on Vehicle - regulatorOrg_gw,

and choose Ron as the identity to connect with:
~ FABRIC GATEWAYS

Vehicle - dealerOrg_gw @
Vehicle - requlatorOrg_gw &

Choose an identity to connect with

Ron

__ 63. Highlight the getPreviousOwners and right-click....Evaluate

IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

__64. When prompted, Ensure the parameters you enter are as follows (in [] square
brackets):

["MQCARI1"]

Press enter twice to accept the defaults for the transient data and peer targeting
prompts. Review the output in the Output pane — you should see the query result
shows that the previous ownership history matches exactly what you saw in the

You’ve now seen two perspectives to verify the application ownership history of car
MQCAR11, as a result of ownership changes ; one via the application query response
(that is returned via MQ); the other, by directly querying the ledger via smart contract
transaction getPreviousOwners.

Optional Lab - try out a different car ID from the Dealer app: that is: 1) create a car
(say MQCAR13 from the menu), then 2) change car ownership as shown and finally 3)
verify current and previous ownership history, using the Regulator app menu and verify
using the smart contract query using getPreviousOwners.

This concludes this section of the lab.

Review
In this part of the Lab you have:

e Successfully created a chain of car ownership history as Dino using the Dealer
App.

e Successfully audited the car’s ownership history on the blockchain ledger,
firstly through the Regulator Application (routes requests via IBM MQ and the
IBM MQ Bridge for Blockchain) and then querying the ledger directly using the
IBM Blockchain Platform VS Code extension, and a smart contract query.

Page 47
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

8 We Value Your Feedback!

e Your feedback is very important to us as we use it to continually improve the lab
material.

e To give us feedback after the lab has finished, please send your comments to
“blockchain@uk.ibm.com”

Page 48
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

Appendix 1: Lab Environment

This appendix provides more information on how this lab environment is configured in this
environment.

As mentioned in the introduction of the lab guide, the sample applications (Dealer and
Regulator App) are Node.JS based samples, that consume the IBM MQ APIs to be able to put
and get messages from/to the IBM MQ Advanced Server queues — more info on that here
https://github.com/ibm-messaging/mqg-mgi-nodejs/blob/master/README.md .

The Regulator and Dealer (docker based) member networks are built and configured by
Ansible and is all located local see more https://github.com/IBM-Blockchain/ansible-role-
blockchain-platform-manager/blob/master/README.md .

The bridge configuration tool to create configurations is called runmgbchb- it asks a series of
qguestions to create configuration files, and based on parameters set for the respective
Dealer/Regulator bridge instances. See
https://www.ibm.com/support/knowledgecenter/SSFKSJ 9.1.0/com.ibm.mq.con.doc/q13088
0 _.htm#9130880_ and for more info on the configuration tool, see
https://www.ibm.com/support/knowledgecenter/SSFKSJ 9.1.0/com.ibm.mg.con.doc/q13089
0_.htm

More information on the configuration tool and how to create IBM MQ Bridge for Blockchain
configuration files is described in the next Appendix.

Page 49
IBM MQ Bridge for Blockchain Lab

https://github.com/ibm-messaging/mq-mqi-nodejs/blob/master/README.md
https://github.com/IBM-Blockchain/ansible-role-blockchain-platform-manager/blob/master/README.md
https://github.com/IBM-Blockchain/ansible-role-blockchain-platform-manager/blob/master/README.md
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q130880_.htm#q130880_
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q130880_.htm#q130880_
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q130890_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.con.doc/q130890_.htm

IBM Blockchain An IBM Proof of Technology

Appendix 2: Creating the MQ Bridge Configuration file

The IBM MQ Bridge MQ component has a configuration tool to generate its Bridge
configuration file for an organisation’s member network. To answer the questions
asked by the interactive CLI tool, you need the parameters from your blockchain
network credentials file, and from your IBM MQ Advanced queue manager that your
application ultimately interacts with. Once the IBM Bridge Component is installed, you
would run the tool using the following command (once you’ve set your environment
using setmgenv etc) eg.

runmgbcb -o config file name.cfg

As you’ve seen for the Dealer bridge, it offers some default values, for given parameter
fields - these are shown inside the square brackets []. As you answer the questions,
you can press Enter to accept existing values, press space then Enter to clear existing
values (eg if you have re-run the tool, pointing at the same output config file), and type
inside the brackets then press Enter to add new values. You can separate lists of
values by commas, or by entering each value on a new line. A blank line ends the list.
Note: You cannot edit the existing values. You can keep, replace, or clear them.

You’ll need to enter values for the connection to your IBM MQ Advanced queue
manager. Minimum values that are needed for the connection are the queue manager
name, and the names of the bridge input and reply queues. For connections to remote
queue managers, you will also need MQ Channel and MQ Conname (host address and
port where the queue manager is running). To use TLS, for connecting to IBM MQ
Advanced Server - you must use JNDI or CCDT and specify MQ CCDT URL or JNDI
implementation class and JNDI provider URL accordingly.

Page 50
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology
Appendix 3: Teardown custom Vehicle Lifecycle network

The following steps are used to tear down the custom Fabric network that contains the
Regulator / Dealer network.

1. InVS Code, disconnect any connected Fabric Environment.

2. Right click on any Fabric Environment for DealerOrg and RegulatorOrg and Delete
Environment (Remember to click yes in the bottom corner of the screen)

~ FABRIC ENVIRONMENTS

1 Org Local Fabric o (click to skart)

Vehicle
Delete

Start

3. Inaterminal window, run the following commands to clear up the “custom” Fabric:
cd ~/workspace/mqbridge/hlf-ansible
.Jteardown.sh

4. Observe that the containers are stopped and removed.

Page 51
IBM MQ Bridge for Blockchain Lab

IBM Blockchain An IBM Proof of Technology

Appendix 4: Description of files used in this lab

List of files and description of customisations applied by folder

Under the HOME/workspace/monitoring subdirectory, a few folders exist containing the
configuration / client files used to complete this IBM Blockchain Platform monitoring lab

mgbridge

ftHome workspace mgqbridge hlfansible contracts fabcar
© Recent
@ Home J J J

fabcar hlf-ansible mgapp bridgeconfig_
[m Desktop dealer.cfg
[Documents
«» Downloads -
43 Musi bridgeconfig_ clearQs.sh createQs.sh createQueues.
usic regulator.cfg mgsc

A1 Pictures
vl Videos E E
T Trash mgq_install.sh runDealerBridge.sh runRegBridge.sh

First let’s describe the files/folders in the main directory (above) alphabetically, then their

contents in turn:

File
bridgeconfig_dealer.cfg

bridgeconfig_regulator.cfg

clearQs.sh

createQMgrs.sh

createQs.sh

Description Comments
This is the IBM MQ Bridge for
Blockchain configuration file for the
Dealer organisation. It is created as a
result of launching the IBM MQ Bridge
for Blockchain configuration tool, as
described in more detail in Appendix
2.

As above, but for the Regulator
organisation. Again, this is described
in more detail in Appendix 2.

Well, it clears Queues @) —thereis a
lab step where this script is launched
— as at that point the Queue needs
clearing before proceeding.

Bash script to create the Queue
Managers

This script runs a sequence of
operations from an MQ script files, to

Page 52
IBM MQ Bridge for Blockchain Lab

IBM Blockchain

createQueues.mqsc

createlLstnr_Dealer.mgsc

createlLstnr_Regulator.mqgsc

mq_install.sh

runDealerBridge.sh

runRegBridge.sh

create queues automatically and
conveniently, with the correct names
and also the Listeners and Server
Channel connection definitions.

An MQ SCript file (.mgsc suffix), that
carries out some queue creations and
associated security / authorization
updates that are required

Creates the Listener (port 1414) and
Server Channel for Dealer_QM1 queue
manager

Creates the Listener (port 1415) and
Server Channel for Regulator_QM1
gueue manager

This script was used to install the IBM
MQ Advanced Server solution,
including the IBM MQ Bridge for
Blockchain component

This launches the IBM MQ Bridge for
Blockchain listener, so that it can
manage requests/responses between
the Dealer’s MQ queues, and the
Dealer’s blockchain network.

Exactly as above, except launches the
bridge component for the Regulator
organisation and the Regulator’s MQ
queues and its blockchain network.

An IBM Proof of Technology

createlLstnr_Dealer.mqsc

Folder: fabcar: This folder contains the source Hyperledger Fabric Sample Fabcar client app.
It has bash script wrappers, to generate a transaction workload against the smart contract
deployed to IBM Blockchain Platform — all files are in the ‘javascript’ sub-folder

File Description Comments

fabcars.js Fabcar Smart contract source
code — contains a series of
transactions to initialise the
ledger, create or update cars,

and query car ownership or
the history of previous owners
package.json The Node.JS package file,
describing package name,
npm dependencies etc etc.

Page 53

The fabcarl101.cds file is already
packaged and this is imported from
the hlf-ansible subdirectory under
‘mgbridge’

please note

IBM MQ Bridge for Blockchain Lab

IBM Blockchain

An IBM Proof of Technology

Folder: hif-ansible: This is the ansible playbook directory — it contains the ansible playbook
site.yml that builds the Hyperledger Fabric network containing two organisations.

File/Folder
contracts

README.md
deploy.sh

requirements.yml

site.yml

start.sh

stop.sh

teardown.sh

Description

Contains the fabcar@101.cds
file and the source code it was
built from. ownership or the
history of previous owners
Ansible readme file

The bash script that builds the
Ansible docker image,
launches it and performs the
installation of the two-
organisation Fabric network
Describes the Ansible role
used to interpret the playbook
instructions

This the custom ansible
playbook that created the
Fabric network and associated
artifacts. Can be torn down
using teardown.sh

Docker start the dockerized
two organisation network, if it
was previously stopped or if
you are at the beginning of the
lab

Docker stop the dockerized
two organisation network, if it
was previously started.

Tears down the dockerized
Fabric network, including its
related images, and including
pruning old chaincode images.

Page 54

Comments

The fabcarl101.cds file is already
packaged so it can be
installed/instantiated by the ansible
playbook.

Builds both the Dealer and the
Regulator blockchain environments
for this MQ Bridge lab.

This creates the Nodes, gateways
and wallets, to enable a single
import of the Vehicle Lifecycle
Fabric environment, comprising two
organisations.

The script also removes the nodes,
wallets and gateways and the
ansible subdirectory ‘vehicle’ — so
that a new deploy can be carried
out.

IBM MQ Bridge for Blockchain Lab

IBM Blockchain

An IBM Proof of Technology

Folder: mqgapp: This contains all the Dealer and Regulator Application client code. It is from
here that the Node.JS applications are launched and where the Node.JS dependencies are

installed.

File/Folder
clientcfg.json

dealer.js

inquirechoices.js

package.json

reg-inquirechoices.js

regulator.js

runDealerApp.sh

Description

This file contains the matching
Fabric blockchain JSON
requests, that are matched,
when a user using the
respective Dealer or Regulator
Apps select a car (from the
menu) to create or query: a
selected car matches the
corresponding operation in
this .json file — and that
operation (in an MQ message)
is what gets posted by the IBM
MQ Bridge for Blockchain
component to the blockchain.
This is the Node.JS application
for the Dealer App

This contains the inquirer
module that enables the menu
and menu prompts to be
created. The menu in this file
is customised for the Dealer
App

The Node.JS application
package definition

Exactly the same as
inquirechoices.js, except it has
the Regulator App menu
choices.

This is the Node.JS application
for the Regulator App.

This is the bash ‘wrapper’
script that launches the Dealer
App ; it also sets the MQ
connection information, so the
application knows how to
connect to the Dealer’s Queue
Manager in MQ

Page 55

Comments

The Node.JS Apps use menu
selection, then match on the entry in
clientcfg.json, to issue the correct
JSON operation to the IBM MQ
Bridge for Blockchain

This gets launched by
runDealerApp.sh

This gets launched by runRegApp.sh

IBM MQ Bridge for Blockchain Lab

IBM Blockchain

runRegApp.sh

This is the bash ‘wrapper’
script that launches the
Regulator App ; it also sets the
MQ connection information, so
the application knows how to
connect to the Regulator’s
Queue Manager in MQ

Page 56

An IBM Proof of Technology

IBM MQ Bridge for Blockchain Lab

