
Kubernetes Explained
Garrett Woodworth

IBM Z Technical Specialist
garrett.lee.woodworth@ibm.com



Roadmap

Containers Kubernetes 
Concepts

Kubernetes 
Architecture

How to get 
started



1. Build Image Bins/libs in 
layers on top 
of base os



2. Store Image

Docker

Docker push

Image 
Repository



3. Run Image as Container on Host Machine

Namespace + cgroups

Kernel

Docker



Docker Use

• Portable, independently packaged 
images for apps/services which can be 
used across Linux distros

• Lightweight Namespace Isolation and 
cgroup resource limits for rapid 
deployment

• Storage pooling of host os and applicable 
bins/libraries

• Manifest lists -> support for multiple 
architectures (i.e. s390x, power, x86) [up to 
developers to enable for a specific 
container]



Why Orchestration (short)



Why Orchestration (long) ?

Scaling Out Containers (especially for microservices) leads to management issues
Ø What happens when a container dies? (recovery)

Ø How do I rollout new versions of my application?

Ø How do I expose containers to the outside world (port conflicts become a problem if using one 
host)?

Ø How do I scale my application and load-balance calls to it?

Ø How do I secure access to my containers?
Ø How do I manage credentials for my applications?

Ø How can I manage my containers across nodes (machines / vms in my datacenter or cloud) 
from one control plane to better utilize resources (resource pooling -> improved scheduling -> 
improved utilization)?

....



Docker Adoption 
and Container 
Orchestration

� Over time companies are realizing the 
need for container orchestration from 
the beginning



Why 
Kubernetes?

� Open source

� High community involvement 

� Good starting point (Many 
tutorials, start with docker)

� Availability (Cloud Private, IKS, 
EKS, GKS, AKS, OpenShift, etc.)

� Standard (Automation)



Whose Behind 
these Open 
Source Projects?

Source: Stackalytics Source: Stackalytics



Cluster (Simple)

� A group of masters and nodes 
working together to form one 
addressable unit 

� Masters run system containers 
(containers to maintain the 
system)

� Nodes (workers) handle the 
application containers that run 
containerized workloads 
(containers scheduled by the 
platform) as well as some 
Kubernetes system containers 
specific for nodes



Kubernetes Namespaces (not Linux 
namespaces)

� Virtual clusters all connected to the same “physical” cluster
� End user sees the cluster via current namespace (i.e. kubectl get pods will show pods in current 

namespace)
Ø Divide cluster resources between different users
Ø Resources (i.e. pods, replicasets, etc.) scoped by namespace (resource names unique within 

namespace)

� Initial Kubernetes Namespaces 
1. default: objects with no defined namespace 
2. kube-system: objects created by Kubernetes system (i.e. helm-api, tiller, logging, kube-dns, etc.)
3. kube-public: originally configured as readable by all users (even unauthenticated users) to make 

certain resources visible cluster-wide  

� Make and view namespaces 
o kubectl create namespace hi [makes new namespace called hi]
o kubectl get namespace [returns all namespaces on the “physical” cluster]



Kubernetes Resources

� Kubernetes is a declarative system: you declare how you want the system to be (spec = desired 
state) and Kubernetes monitors it to keep it that way (status = current state)

� Kubernetes specifically attempts to reconcile the desired state with the current stat

� Each object also has an api field and all actions go through the kubernetes api server

� You can use kubectl to perform actions which become wrapped api calls 

� Decoupling resources is an emphasis

� In order to see what a specific resource is and what field it takes you can always use (kubectl explain 
resource) such as (kubectl explain node) to get a description of it and find out its api version and 
what fields it takes



Nodes

� Workers in the 
cluster where 
application 
containers are 
scheduled and run



Simplified Big Picture
� Pod – Set of containers running in same 
execution environment/context (smallest unit 
in kubernetes) [containers in pod share some 
Linux  namespaces (Network, IPC, and PID if 
enabled) but each have own cgroup]

� ReplicaSet – makes sure correct number 
and types of pods are available 

� Deployment –Manages replica sets for ease 
of new app version rollout.

� Service – Provides access point for 
pods/deployment as well as load balancing

� Persistent Volume Claim – provides storage 
volumes to container runtime (i.e. docker) by 
binding to persistent volumes

� Storage Class – groups storage so that it 
can be dynamically selected and provisioned

� Persistent Volume - Set of external storage 
defined to kubernetes



Pods

� 1+ containers running in same 
execution context [containers in pod 
share some Linux  namespaces (Network, 
IPC, and PID if enabled) and storage 
volumes but each have own cgroup]

� smallest unit in kubernetes

� Each have unique ip

� Replaceable (if they die they are 
recreated by their replicaset)



Replica Sets

� How many copies of a pod do I want?

� Makes sure the proper number of copies exist by checking the desired state ( x number of 
pods with the current state)  [ self-healing ]

� Best practice means creating replicaset with a deployment



Deployments

• Manages Replicasets
• Versioned Rollouts  

and Rollbacks
• User creates and 

updates state 
declaration for pods 
and replicasets via 
deployment

• Add parameters for 
scheduling such as 
resource requests



Deployment 
Example

Create deployment from file (deployment.yaml) with:

kubectl apply –f deployment.yaml



Daemonsets

� One pod on every node in host group [specified by labels] (Things like logging controllers, 
monitoring, etc.)

� As nodes are added pods are added to them by daemonset via control loop



Jobs

� Run until completion (Cronjobs can run at specific times) [One-shot]

� Can think of as batch workloads 



Services

� Serves as long-lasting 
frontend for backend pods

� Provides level 4 (TCP/IP) load 
balancing to pods  based on 
number of connections 
(TCP/IP level)



Services 
Example

Create service from file 
(service..yaml) with:

kubectl apply –f service.yaml



Ingress

Service A Service B Service C

Internet 
(HTTP/HTTPS Traffic)

Ingress

Pod 1 Pod 2 Pod 3 Pod 5 Pod 6 Pod 7Pod 4

l=paper-demo
l=marbles-demo l=car-demo

Network rules to route 
traffic to services (saves 
cost of provisioning 
external load balancers, 
etc.)



Ingress 
Example

Create ingress from file 
(ingress.yaml) with:

kubectl apply –f ingress.yaml



Service Catalog � Catalog of services provided by Service Brokers ( contact  point 
for set of services managed by third party)

• Service catalog 
installs the service 
catalog.k8s.io API 
and provides 
resources listed 
under service 
catalog.k8s.io

• ClusterServiceBroker
connect to 
provisioning service

• ClusterServiceClass
= the list of services 
provided  



Operators: 
Controlling 
your 
cluster 
from the 
inside

Write code to extend Kubernetes to 
automate tasks

Uses CRDs (Custom Resource Definitions) 
to define application resources

Popular applications made and 
deployed via operators for best-
practices deployment

Ease of sharing via operator hub

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://operatorhub.io/


Operator Principles

� Application’s operational knowledge -> configuration resource + control loop

• Install controller with deployment or stateful set

• Create CRD (Custom Resource Definition) to use for resource

• Use k8s resources instead of re-inventing the wheel

• Backwards compatible

• Applications should run independently of operator’s existence

• Versioning

• Chaos monkey testing for failures 

• See Introducing Operators

https://coreos.com/blog/introducing-operators.html


Operator Flow:
employs controller pattern (i.e. ReplicaSet, etc.) for your application’s operation



Building 
Operators 

Leverage Existing Tools

� Operator Framework

� Metacontroller w/ self-implemented webhooks

� KUDO (Kubernetes Universal Declarative Operator)

� Kubebuilder

Publish your Operator  on Operator Hub

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://metacontroller.app/
https://kudo.dev/
https://book.kubebuilder.io/
https://operatorhub.io/


Operator Framework

� Operator SDK: Enables developers to build operators based on their 
expertise without requiring knowledge of Kubernetes API complexities.

� Operator Lifecycle Management: Oversees installation, updates, and 
management of the lifecycle of all of the operators (and their 
associated services) running across a Kubernetes cluster.

� Operator Metering (joining in the coming months): Enables usage 
reporting for operators that provide specialized services.

� See Introducing the Operator Framework

� See Operator Framework GitHub

https://coreos.com/blog/introducing-operator-framework
https://github.com/operator-framework


Basic “Physical” Kubernetes Cluster 
Architecture 

Master

Controller-Manager
kube-controller-manager

kube-scheduler

kube-api-server

etcd

kubectl/UI

Node
kubelet kube-proxy

Node
kubelet kube-proxy

Pod
Container

Container

Pod
Container

Container

iptables

iptables

Pod
Container

Container

Pod
Container

Container



Kube-api-server

� Exposes versioned Kubernetes API 

� Validates data for API call

� Only component to interact directly with datastore (etcd) where the state of resources 
are stored

� Once changes occur, notifies other components

� Multiple instances can be deployed for resiliency and handle requests simultaneously

� Everything is authenticated to the api-server via either certificates (node components) or 
tokens (users, service accounts)



etcd

� Distributed highly available key store which stores data for your entire cluster

� Have a backup plan for etcd in your environment just in case

� Only talks to kube-api-server

� Uses RAFT consensus protocol (etcd-raft)



Kube-scheduler

� Waits for new pods and assigns them to nodes

� Can use different schedulers for different pods based on their requirements such as 
Poseidon-Firmament

� Takes into account
Ø individual and collective resource requirements
Ø hardware/software/policy constraints
Ø affinity and anti-affinity specifications
Ø data locality
Ø inter-workload interference
Ø Deadlines



Kube-controller-manager

� Manage resources via control loops that check the desired state vs the current 
state and attempt to realize the desired state in the cluster via actions through 
communication with the API Server

� Manages controllers such as: (endpoints controller, namespace controller, 
serviceaccounts controller, ReplicaSet, Deployments, StatefulSets. DaemonSet, 
Garbage Collection, TTL Controller for Finished Resources, Jobs, CronJob, etc.)

� Multi-threaded daemon embedded with core control loops (i.e. those specified 
above and more)  as well as option for multiple controller-managers for high 
availability.



Kubelet

� Agent running on each node (worker) in the cluster 

� Communicates with api-server and container runtime (i.e. docker, containerd, etc.) to 
ensure pods specified in pod spec are running and healthy

� Coordinates interactions with the nodes such as:
q Network (CNI)

q Image lifecycle 

q Pod lifecycle 

q Storage Volumes

q Quality of Service 

q Metrics/Logging



Kube-proxy

� Provides TCP/UDP level 4 (transport) load-balancing for traffic 
across pods connected to a service (via labels and selectors)

� Uses iptables by default (IPVS option available for better 
performance on clusters with 1000s of pod running in a a cluster) to 
map connections from services to pod ip addresses



Networking Kubernetes Basic

o Within a pod 
v containers share networking and ipc namespace meaning they can communicate over localhost using one port 

space and make ipc calls like if they were on the same vm

o Pod to Pod
v Each pod has unique ip [endpoint] (which is the same as seen from the outside and inside)

v A pod on one node can communicate with all pods on all other nodes with NAT

v Agents on a node can communicate with all pods on that node

v pods in the host network of a node can communicate with all pods on all nodes without NAT 

v Overlay networks [CNI] used to accomplish this such as flanneld or calico

o Pod to Service Communications (clusterip:internal_port -> endpoint:targetPort on pod ) is the cluster 
internal-only option

o External to Service Communications (external_node_ip:node_port -> clusterip:internal_port -> 
endpoint:targetPort on pod) is one of many options



Kubernetes: Where to Start Resources 

Kubernetes Basics Tutorials

� https://kubernetes.io/docs/tutorials/kubernetes-basics/
Setting up Kubernetes Using Docker to try it out

� https://docs.docker.com/docker-for-mac/#kubernetes

Kubernetes Tutorials

� https://kubernetes.io/docs/tutorials/

Kubernetes Docs
� https://kubernetes.io/docs/home/

Kubernetes by Example (Simple Overview of Kubernetes)

� http://kubernetesbyexample

OpenShift interactive learning tutorials (automatically spins up an OpenShift cluster for hands-on exercises)

� https://learn.openshift.com/introduction/
OpenShift on LinuxONE & Linux on IBM Z free trial

� https://cloud.redhat.com/openshift/install

https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://docs.docker.com/docker-for-mac/
https://kubernetes.io/docs/tutorials/
https://kubernetes.io/docs/home/
http://kubernetesbyexample/
https://learn.openshift.com/introduction/
https://cloud.redhat.com/openshift/install

